20 research outputs found

    ADVANCED INTRAVASCULAR MAGNETIC RESONANCE IMAGING WITH INTERACTION

    Get PDF
    Intravascular (IV) Magnetic Resonance Imaging (MRI) is a specialized class of interventional MRI (iMRI) techniques that acquire MRI images through blood vessels to guide, identify and/or treat pathologies inside the human body which are otherwise difficult to locate and treat precisely. Here, interactions based on real-time computations and feedback are explored to improve the accuracy and efficiency of IVMRI procedures. First, an IV MRI-guided high-intensity focused ultrasound (HIFU) ablation method is developed for targeting perivascular pathology with minimal injury to the vessel wall. To take advantage of real-time feedback, a software interface is developed for monitoring thermal dose with real-time MRI thermometry, and an MRI-guided ablation protocol developed and tested on muscle and liver tissue ex vivo. It is shown that, with cumulative thermal dose monitored with MRI thermometry, lesion location and dimensions can be estimated consistently, and desirable thermal lesions can be achieved in animals in vivo. Second, to achieve fully interactive IV MRI, high-resolution real-time 10 frames-per-second (fps) MRI endoscopy is developed as an advance over prior methods of MRI endoscopy. Intravascular transmit-receive MRI endoscopes are fabricated for highly under-sampled radial-projection MRI in a clinical 3Tesla MRI scanner. Iterative nonlinear reconstruction is accelerated using graphics processor units (GPU) to achieve true real-time endoscopy visualization at the scanner. The results of high-speed MRI endoscopy at 6-10 fps are consistent with fully-sampled MRI endoscopy and histology, with feasibility demonstrated in vivo in a large animal model. Last, a general framework for automatic imaging contrast tuning over MRI protocol parameters is explored. The framework reveals typical signal patterns over different protocol parameters from calibration imaging data and applies this knowledge to design efficient acquisition strategies and predicts contrasts under unacquired protocols. An external computer in real-time communication with the MRI console is utilized for online processing and controlling MRI acquisitions. This workflow enables machine learning for optimizing acquisition strategies in general, and provides a foundation for efficiently tuning MRI protocol parameters to perform interventional MRI in the highly varying and interactive environments commonly in play. This work is loosely inspired by prior research on extremely accelerated MRI relaxometry using the minimal-acquisition linear algebraic modeling (SLAM) method

    A review of silhouette extraction algorithms for use within visual hull pipelines

    Get PDF
    © 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group. Markerless motion capture would permit the study of human biomechanics in environments where marker-based systems are impractical, e.g. outdoors or underwater. The visual hull tool may enable such data to be recorded, but it requires the accurate detection of the silhouette of the object in multiple camera views. This paper reviews the top-performing algorithms available to date for silhouette extraction, with the visual hull in mind as the downstream application; the rationale is that higher-quality silhouettes would lead to higher-quality visual hulls, and consequently better measurement of movement. This paper is the first attempt in the literature to compare silhouette extraction algorithms that belong to different fields of Computer Vision, namely background subtraction, semantic segmentation, and multi-view segmentation. It was found that several algorithms exist that would be substantial improvements over the silhouette extraction algorithms traditionally used in visual hull pipelines. In particular, FgSegNet v2 (a background subtraction algorithm), DeepLabv3+ JFT (a semantic segmentation algorithm), and Djelouah 2013 (a multi-view segmentation algorithm) are the most accurate and promising methods for the extraction of silhouettes from 2D images to date, and could seamlessly be integrated within a visual hull pipeline for studies of human movement or biomechanics
    corecore