3,599 research outputs found

    Automatic condition monitoring system for crack detection in rotating machinery

    Get PDF
    Maintenance is essential to prevent catastrophic failures in rotating machinery. A crack can cause a failure with costly processes of reparation, especially in a rotating shaft. In this study, the Wavelet Packets transform energy combined with Artificial Neural Networks with Radial Basis Function architecture (RBF-ANN) are applied to vibration signals to detect cracks in a rotating shaft. Data were obtained from a rig where the shaft rotates under its own weight, at steady state at different crack conditions. Nine defect conditions were induced in the shaft (with depths from 4% to 50% of the shaft diameter). The parameters for Wavelet Packets transform and RBF-ANN are selected to optimize its success rates results. Moreover, ‘Probability of Detection’ curves were calculated showing probabilities of detection close to 100% of the cases tested from the smallest crack size with a 1.77% of false alarms.The authors would like to thank the Spanish Government for financing through the CDTI project RANKINE21 IDI-20101560

    Investigation of gas circulator response to load transients in nuclear power plant operation

    Get PDF
    Gas circulator units are a critical component of the Advanced Gas-cooled Reactor (AGR), one of the nuclear power plant (NPP) designs in current use within the UK. The condition monitoring of these assets is central to the safe and economic operation of the AGRs and is achieved through analysis of vibration data. Due to the dynamic nature of reactor operation, each plant item is subject to a variety of system transients of which engineers are required to identify and reason about with regards to asset health. The AGR design enables low power refueling (LPR) which results in a change in operational state for the gas circulators, with the vibration profile of each unit reacting accordingly. The changing conditions subject to these items during LPR and other such events may impact on the assets. From these assumptions, it is proposed that useful information on gas circulator condition can be determined from the analysis of vibration response to the LPR event. This paper presents an investigation into asset vibration during an LPR. A machine learning classification approach is used in order to define each transient instance and its behavioral features statistically. Classification and reasoning about the regular transients such as the LPR represents the primary stage in modeling higher complexity events for advanced event driven diagnostics, which may provide an enhancement to the current methodology, which uses alarm boundary limits

    Review of recent advances in the application of the wavelet transform to diagnose cracked rotors

    Get PDF
    Wavelet transform (WT) has been used in the diagnosis of cracked rotors since the 1990s. At present, WT is one of the most commonly used tools to treat signals in several fields. Understandably, this has been an area of extensive scientific research, which is why this paper aims to summarize briefly the major advances in the field since 2008. The present review considers advances in the use and application of WT, the selection of the parameters used, and the key achievements in using WT for crack diagnosis.The authors would like to thank the Spanish government for financing through the CDTI project RANKINE21 IDI-20101560

    Railway Axle Early Fatigue Crack Detection through Condition Monitoring Techniques

    Get PDF
    : The detection of cracks in rotating machinery is an unresolved issue today. In this work, a methodology for condition monitoring of railway axles is presented, based on crack detection by means of the automatic selection of patterns from the vibration signal measurement. The time waveforms were processed using the Wavelet Packet Transform, and appropriate alarm values for diagnosis were calculated automatically using non-supervised learning techniques based on Change Point Analysis algorithms. The validation was performed using vibration signals obtained during fatigue tests of two identical railway axle specimens, one of which cracked during the test while the other did not. During the test in which the axle cracked, the results show trend changes in the energy of the vibration signal associated with theoretical defect frequencies, which were particularly evident in the direction of vibration that was parallel to the track. These results are contrasted with those obtained during the test in which the fatigue limit was not exceeded, and the test therefore ended with the axle intact, verifying that the effects that were related to the crack did not appear in this case. With the results obtained, an adjusted alarm value for a condition monitoring process was established

    Outer raceway fault detection and localization for deep groove ball bearings by using thermal imaging

    Get PDF
    This paper discusses outer raceway fault detection and localization for rolling element bearings by means of thermal imaging. In particular, deep groove ball bearings have been monitored. Whereas bearings in industrial applications are usually fully covered, the used test setup allows to monitor the uncovered bearings to understand their heat increase and propagation. The main contribution of this paper is the methodology to process and analyse the thermal data of the bearings. The presented methodology is applied on both a healthy bearing and a bearing with outer raceway fault. By revealing significantly higher temperatures for the faulty bearing than for the healthy bearing, thermal imaging enables fault detection. Additionally, the stationary characteristic of the outer ring allows to locate the outer raceway fault by means of its thermal impact

    Crack detection in rotating shafts using wavelet analysis, Shannon entropy and multi-class SVM

    Get PDF
    Incipient fault diagnosis is essential to detect potential abnormalities and failures in industrial processes which contributes to the implementation of fault-tolerant operations for minimizing performance degradation. In this paper, an innovative method named Self-adaptive Entropy Wavelet (SEW) is proposed to detect incipient transverse crack faults on rotating shafts. Continuous Wavelet Transform (CWT) is applied to obtain optimized wavelet function using impulse modelling and decompose a signal into multi-scale wavelet coefficients. Dominant features are then extracted from those vectors using Shannon entropy, which can be used to discriminate fault information in different conditions of shafts. Support Vector Machine (SVM) is carried out to classify fault categories which identifies the severity of crack faults. After that, the effectiveness of this proposed approach is investigated in testing phrase by checking the consistency between testing samples with obtained model, the result of which has proved that this proposed approach can be effectively adopted for fault diagnosis of the occurrence of incipient crack failures on shafts in rotating machinery

    Crack detection in rotating shafts based on 3x energy: analytical and experimental analyses

    Get PDF
    Maintenance is essential to prevent catastrophic failures in rotating machinery. A crack can cause a failure with costly processes of reparation, especially in a rotating shaft. In this study, the wavelet transform theory was applied to vibration signals to detect cracks in a rotating shaft. Data were obtained from an analytical Jeffcott rotor model with a breathing function to simulate cracks. Large changes in energy when a crack appears were discovered at 1 ×, 2 × and 3 ×. Thereafter, vibration signals were obtained from a rotating machine at different steady-state rotational speeds using an accelerometer mounted on the bearing housing. Nine defect conditions were induced in the shaft (with depths from 4% to 50% of the shaft diameter). By matching the theoretical results with the experimental data, it was found that only the 3 × component of the rotational speed is a clear indicator of the presence of a crack in this case. The energy level at this harmonic can be used for the inverse process of crack detection. Moreover, “probability of detection” curves were calculated. They showed very good results.The authors would like to thank the Spanish Government for financing through the CDTI project RANKINE21 IDI-20101560.Publicad

    Effective Crack Detection in Railway Axles Using Vibration Signals and WPT Energy

    Get PDF
    Crack detection for railway axles is key to avoiding catastrophic accidents. Currently, non-destructive testing is used for that purpose. The present work applies vibration signal analysis to diagnose cracks in real railway axles installed on a real Y21 bogie working on a rig. Vibration signals were obtained from two wheelsets with cracks at the middle section of the axle with depths from 5.7 to 15 mm, at several conditions of load and speed. Vibration signals were processed by means of wavelet packet transform energy. Energies obtained were used to train an artificial neural network, with reliable diagnosis results. The success rate of 5.7 mm defects was 96.27%, and the reliability in detecting larger defects reached almost 100%, with a false alarm ratio lower than 5.5%.The research work described in this paper was supported by the Spanish Government through the MAQ-STATUS DPI2015-69325-C2-1-R project. Authors would also thank the support provided by the participating companies (Renfe, Alstom Spain, SKF Spain, and Danobat Railway Systems) in this project
    corecore