32 research outputs found

    Improvement of region of interest extraction and scanning method of computer-aided diagnosis system for osteoporosis using panoramic radiographs

    Get PDF
    ObjectivesPatients undergoing osteoporosis treatment benefit greatly from early detection. We previously developed a computer-aided diagnosis (CAD) system to identify osteoporosis using panoramic radiographs. However, the region of interest (ROI) was relatively small, and the method to select suitable ROIs was labor-intensive. This study aimed to expand the ROI and perform semi-automatized extraction of ROIs. The diagnostic performance and operating time were also assessed.MethodsWe used panoramic radiographs and skeletal bone mineral density data of 200 postmenopausal women. Using the reference point that we defined by averaging 100 panoramic images as the lower mandibular border under the mental foramen, a 400x100-pixel ROI was automatically extracted and divided into four 100x100-pixel blocks. Valid blocks were analyzed using program 1, which examined each block separately, and program 2, which divided the blocks into smaller segments and performed scans/analyses across blocks. Diagnostic performance was evaluated using another set of 100 panoramic images.ResultsMost ROIs (97.0%) were correctly extracted. The operation time decreased to 51.4% for program 1 and to 69.3% for program 2. The sensitivity, specificity, and accuracy for identifying osteoporosis were 84.0, 68.0, and 72.0% for program 1 and 92.0, 62.7, and 70.0% for program 2, respectively. Compared with the previous conventional system, program 2 recorded a slightly higher sensitivity, although it occasionally also elicited false positives.ConclusionsPatients at risk for osteoporosis can be identified more rapidly using this new CAD system, which may contribute to earlier detection and intervention and improved medical care

    Automatic detection of the mental foramen for estimating mandibular cortical width in dental panoramic radiographs

    Get PDF
    Screening tests are vital for detecting diseases, especially at early stages, where efforts can prevent further illness. For example, osteoporosis is a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in bone fragility and susceptibility to fracture. Dual-energy x-ray absorptiometry is commonly used to diagnose osteoporosis since it evaluates bone mineral density. It is the most standard method for diagnosing osteoporosis, but it is not immediately available and is commonly used for research due to the high capital cost. Further, dual-energy x-ray absorptiometry is not used for populational-based screening due to its suboptimal ability to predict hip fractures based on measurements. Therefore, it is recommended to adopt a case-finding strategy to identify individuals at risk who benefit from the dual-energy x-ray absorptiometry examination. Several indices have been developed to estimate bone quality in dental panoramic radiographs to identify individuals at risk of osteoporosis. In particular, the mandibular cortical width index. Studies suggest that dentists can measure the mandibular cortical width to identify individuals at risk and refer them for bone mineral density testing. However, this endeavor is time-consuming and inconsistent due to the bone's unclear borders and the challenge of determining the mental foramen's position, leading to varying measurements between clinicians. Therefore, the dentistry community is investigating how to automate this process effectively and accurately. In an attempt to address some of these problems, this thesis presents a method to assess the mandibular cortical width index automatically. Four different object detectors were analyzed to determine the mental foramen's position. EfficientDet showed the highest average precision (0.30). Therefore, it was combined with an iterative procedure to estimate mandibular cortical width. The results are promising

    GABUNGAN METODE GRAY LEVEL CO-OCCURRENCE MATRIX DAN GRAY LEVEL RUN LENGTH MATRIX PADA ANALISIS CITRA RADIOGRAFI DENTAL PANORAMIC UNTUK DETEKSI DINI OSTEOPOROSIS

    Get PDF
    ABSTRAKOsteoporosis merupakan salah satu masalah kesehatan utama. Osteoporosis dianggap sebagai penyakit metabolik yang umum, dan sering diabaikan. Penyakit ini kebanyakan menyerang wanita dewasa yang dapat menyebabkan  kekurusan dan kerapuhan tulang, dan memicu patah tulang. Osteoporosis didiagnosis dengan mengukur Densitas Mineral Tulang menggunakan DXA (dual energy X-ray absorptiometry). Perawatan dengan alat ini membutuhkan biaya yang mahal, dan alat ini tidak tersedia secara luas. Sampel penelitian ini mengambil 19 orang dengan kriteria inklusi perempuan telah menopause, dinyatakan sehat, tidak mengalami patah tulang dan tidak memiliki kelainan tulang sejak lahir. Sampel diukur nilai bone mineral density (BMD) atau derajat osteoporosis dengan menggunakan DXA. Kemudian dilakukan pemotretan radiografi untuk mendapatkan citra dental panoramic. Tahapan penelitian adalah: 1) melakukan pre-processing terhadap citra radiografi panoramic tulang mandibular; 2) menentukan nilai tekstur citra metode  gray level co-occurrence matrix 3) menentukan nilai tekstur citra metode  gray level run length matrix 4) mengkalisifikasikan menggunakan metode k means kluster. Hasil Klasifikasi dengan menggunakan k means Kluster menunjukkan ketepatan klasifikasi sebesar 89,47% Kata kunci: radiografi; citra tulang rahang; BMD; analisis tekstur. ABSTRACTOsteoporosis is one of the major health problems. Osteoporosis is considered a common metabolic disease, and is often overlooked. This disease mostly affects adult women which can cause thin and brittle bones, and trigger fractures. Osteoporosis is diagnosed by measuring Bone Mineral Density using DXA (dual energy X-ray absorptiometry). Treatment with this device is expensive, and it is not widely available. The sample of this study took 19 people with the inclusion criteria of women having menopause, declared healthy, had no fractures and had no bone abnormalities since birth. The sample was measured the value of bone mineral density (BMD) or the degree of osteoporosis using DXA. Then, radiography was taken to obtain a panoramic dental image. The stages of the research are: 1) pre-processing the panoramic radiographic image of the mandible; 2) determine the texture value of the image using the gray level co-occurrence matrix method 3) determine the texture value of the image using the gray level run length matrix method 4) classify it using the k means cluster method.Classification results using k means clusters show the classification accuracy of 89.47% Keywords:. Radiography; dental panoramic; BMD; texture analysi

    Machine Learning in Dentistry: A Scoping Review

    Get PDF
    Machine learning (ML) is being increasingly employed in dental research and application. We aimed to systematically compile studies using ML in dentistry and assess their methodological quality, including the risk of bias and reporting standards. We evaluated studies employing ML in dentistry published from 1 January 2015 to 31 May 2021 on MEDLINE, IEEE Xplore, and arXiv. We assessed publication trends and the distribution of ML tasks (classification, object detection, semantic segmentation, instance segmentation, and generation) in different clinical fields. We appraised the risk of bias and adherence to reporting standards, using the QUADAS-2 and TRIPOD checklists, respectively. Out of 183 identified studies, 168 were included, focusing on various ML tasks and employing a broad range of ML models, input data, data sources, strategies to generate reference tests, and performance metrics. Classification tasks were most common. Forty-two different metrics were used to evaluate model performances, with accuracy, sensitivity, precision, and intersection-over-union being the most common. We observed considerable risk of bias and moderate adherence to reporting standards which hampers replication of results. A minimum (core) set of outcome and outcome metrics is necessary to facilitate comparisons across studies

    Gradient-adaptive Nonlinear Sharpening for Dental Radiographs

    Get PDF
    Unsharp Masking is a popular image processing technique used for improving the sharpness of structures on dental radiographs. However, it produces overshoot artefact and intolerably amplifies noise. On radiographs, the overshoot artefact often resembles the indications of prosthesis misfit, pathosis, and pathological features associated with restorations. A noise- robust alternative to the Unsharp Masking algorithm, termed Gradient-adaptive Nonlinear Sharpening (GNS) which is free from overshoot and discontinuity artefacts, is proposed in this paper. In GNS, the product of the arbitrary scalar termed as ‘scale’ and the difference between the output of the Adaptive Edge Smoothing Filter (AESF) and the input image, weighted by the normalized gradient magnitude is added to the input image. AESF is a locally-adaptive 2D Gaussian smoothing kernel whose variance is directly proportional to the local value of the gradient magnitude. The dataset employed in this paper is downloaded from the Mendeley data repository having annotated panoramic dental radiographs of 116 patients. On 116 dental radiographs, the values of Saturation Evaluation Index (SEI), Sharpness of Ridges (SOR), Edge Model Based Contrast Metric (EMBCM), and Visual Information Fidelity (VIF) exhibited by the Unsharp Masking are 0.0048 ± 0.0021, 4.4 × 1013 ± 3.8 × 1013, 0.2634 ± 0.2732 and 0.9898 ± 0.0122. The values of these quality metrics corresponding to the GNS are 0.0042 ± 0.0017, 2.2 × 1013 ± 1.8 × 1013, 0.5224 ± 0.1825, and 1.0094 ± 0.0094. GNS exhibited lower values of SEI and SOR and higher values of EMBCM and VIF, compared to the Unsharp Masking. Lower values of SEI and SOR, respectively indicate that GNS is free from overshoot artefact and saturation and the quality of edges in the output images of GNS is less affected by noise. Higher values of EMBCM and VIF, respectively confirm that GNS is free from haloes as it produces thin and sharp edges and the sharpened images are of good information fidelity

    Applications of artificial intelligence in dentistry: A comprehensive review

    Get PDF
    This work was funded by the Spanish Ministry of Sciences, Innovation and Universities under Projects RTI2018-101674-B-I00 and PGC2018-101904-A-100, University of Granada project A.TEP. 280.UGR18, I+D+I Junta de Andalucia 2020 project P20-00200, and Fapergs/Capes do Brasil grant 19/25510000928-3. Funding for open-access charge: Universidad de Granada/CBUAObjective: To perform a comprehensive review of the use of artificial intelligence (AI) and machine learning (ML) in dentistry, providing the community with a broad insight on the different advances that these technologies and tools have produced, paying special attention to the area of esthetic dentistry and color research. Materials and methods: The comprehensive review was conducted in MEDLINE/ PubMed, Web of Science, and Scopus databases, for papers published in English language in the last 20 years. Results: Out of 3871 eligible papers, 120 were included for final appraisal. Study methodologies included deep learning (DL; n = 76), fuzzy logic (FL; n = 12), and other ML techniques (n = 32), which were mainly applied to disease identification, image segmentation, image correction, and biomimetic color analysis and modeling. Conclusions: The insight provided by the present work has reported outstanding results in the design of high-performance decision support systems for the aforementioned areas. The future of digital dentistry goes through the design of integrated approaches providing personalized treatments to patients. In addition, esthetic dentistry can benefit from those advances by developing models allowing a complete characterization of tooth color, enhancing the accuracy of dental restorations. Clinical significance: The use of AI and ML has an increasing impact on the dental profession and is complementing the development of digital technologies and tools, with a wide application in treatment planning and esthetic dentistry procedures.Spanish Ministry of Sciences, Innovation and Universities RTI2018-101674-B-I00 PGC2018-101904-A-100University of Granada project A.TEP. 280.UGR18Junta de Andalucia P20-00200Fapergs/Capes do Brasil grant 19/25510000928-3Universidad de Granada/CBU

    Studies on neutron diffraction and X-ray radiography for material inspection

    Get PDF
    Among the different probes to study the structures of the bio and structural materials, X-ray and neutron are widely used because of their distinctive usefulness in investigating different structures. X-ray radiography and neutron diffraction are two widely known non-destructive techniques for material inspection. Here we demonstrate the design of neutron diffractometer with low power source and analyze the digital image produced by the X-ray radiography instead of neutron diffraction because of the availability of the data. Neutron diffraction is a powerful tool for understanding the behavior of crystal structures and phase behaviors of materials. While neutron diffraction capabilities continue to explore new frontiers of materials science, such capabilities currently exist in limited places, which require high neutron flux. The study seeks to design a low-resolution neutron diffraction system that can be installed on low power reactors (e.g. 250 kW thermal power). The performance of the diffractometer is estimated using Monte-Carlo ray-tracing simulations with McStas with an application in material science. Both monochromatic and polychromatic configurations are considered in order to maximize the net diffracted neutron flux at the detectors with reasonable resolution. On the other hand, considering X-ray radiography as a structure inspecting technique, analysis of dental X-ray panorama is performed for the detection of oral lesions. A novel automatic computer-aided method to identify dental lesions from dental X-ray is presented. Morphological operations, intensity profile analysis, automated seed point selection, region growing, feature extraction and neural network application are carried out to perform the job. Results show that the performance of the proposed method surpasses existing automated methods utilizing dental X-rays --Abstract, page iii

    Dental anomaly detection using intraoral photos via deep learning

    Get PDF
    Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.Fil: Ragodos, Ronilo. University of Iowa; Estados UnidosFil: Wang, Tong. University of Iowa; Estados UnidosFil: Padilla, Carmencita. University of the Philippines; FilipinasFil: Hecht, Jacqueline T.. University of Texas Health Science Center at Houston; Estados UnidosFil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Orioli, Ieda Maria. Universidade Federal do Rio de Janeiro; BrasilFil: Buxó, Carmen J.. Universidad de Puerto Rico; Puerto RicoFil: Butali, Azeez. University of Iowa; Estados UnidosFil: Valencia Ramirez, Consuelo. Fundación Clínica Noel; ColombiaFil: Restrepo Muñeton, Claudia. Fundación Clínica Noel; ColombiaFil: Wehby, George. University of Iowa; Estados UnidosFil: Weinberg, Seth M.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Marazita, Mary L.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Moreno Uribe, Lina M.. University of Iowa; Estados UnidosFil: Howe, Brian J.. University of Iowa; Estados Unido

    Artificial intelligence effectivity in fracture detection

    Get PDF
    The scientific study aimed to explore the practical implementation of artificial intelligence (AI) technologies in radiology and traumatology for fracture detection, as well as evaluate their overall effectiveness in modern medicine. In recent years, AI has gained significant traction in the healthcare industry, enabling the analysis of patients' clinical data and facilitating disease diagnosis, monitoring, risk assessment, and surgical intervention possibilities. The relevance of the scientific work is in the gradual expansion of practical applications of artificial intelligence technologies in medicine, particularly in radiology for diagnosing fractures. The study aimed to investigate the practical effectiveness of AI technology in fracture detection on example of Hospital of Traumatology and Orthopaedics in Riga, Latvia. The methodological approach combined system analysis of AI system implementation in modern medical institutions for creating X-ray images with a clinical study of fracture diagnosis experience at the Hospital of Orthopedics and Traumatology in Riga, Latvia. Fractures were detected by radiologists, attending physicians, and the AI program, with comparisons made between them. Results were analyzed to assess the program's efficacy. The results of the study demonstrated the high effectiveness of AI technologies in fracture detection. The application of these systems in clinical practice led to a significant reduction in diagnostic errors (by 2-3 times) and an increase in diagnostic accuracy (from 78.1% to 85.2%). Moreover, AI systems proved to be capable of detecting fractures that were not initially identified during routine examinations by paramedics and medical practitioners. This emphasized the practicality of expanding the use of these systems in clinical practice. The practical significance of the obtained results is in their potential use in the development of software systems based on AI, aimed at enhancing fracture diagnosis in medical institutions. These findings provided valuable insights for further advancements in AI-based technologies for fracture detection
    corecore