10,865 research outputs found

    A framework for modelling mobile radio access networks for intelligent fault management

    Get PDF
    Postprin

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    The VEX-93 environment as a hybrid tool for developing knowledge systems with different problem solving techniques

    Get PDF
    The paper describes VEX-93 as a hybrid environment for developing knowledge-based and problem solver systems. It integrates methods and techniques from artificial intelligence, image and signal processing and data analysis, which can be mixed. Two hierarchical levels of reasoning contains an intelligent toolbox with one upper strategic inference engine and four lower ones containing specific reasoning models: truth-functional (rule-based), probabilistic (causal networks), fuzzy (rule-based) and case-based (frames). There are image/signal processing-analysis capabilities in the form of programming languages with more than one hundred primitive functions. User-made programs are embeddable within knowledge basis, allowing the combination of perception and reasoning. The data analyzer toolbox contains a collection of numerical classification, pattern recognition and ordination methods, with neural network tools and a data base query language at inference engines's disposal. VEX-93 is an open system able to communicate with external computer programs relevant to a particular application. Metaknowledge can be used for elaborate conclusions, and man-machine interaction includes, besides windows and graphical interfaces, acceptance of voice commands and production of speech output. The system was conceived for real-world applications in general domains, but an example of a concrete medical diagnostic support system at present under completion as a cuban-spanish project is mentioned. Present version of VEX-93 is a huge system composed by about one and half millions of lines of C code and runs in microcomputers under Windows 3.1.Postprint (published version
    corecore