11 research outputs found

    Automatic classification of colorectal and prostatic histologic tumor images using multiscale multispectral local binary pattern texture features and stacked generalization

    Get PDF
    This paper proposes a new multispectral multiscale local binary pattern feature extraction method for automatic classification of colorectal and prostatic tumor biopsies samples. A multilevel stacked generalization classification technique is also proposed and the key idea of the paper considers a grade diagnostic problem rather than a simple malignant versus tumorous tissue problem using the concept of multispectral imagery in both the visible and near infrared spectra. To validate the proposed algorithm performances, a comparative study against related works using multispectral imagery is conducted including an evaluation on three different multiclass datasets of multispectral histology images: two representing images of colorectal biopsies - one dataset was acquired in the visible spectrum while the second captures near-infrared spectra. The proposed algorithm achieves an accuracy of 99.6% on the different datasets. The results obtained demonstrate the advantages of infrared wavelengths to capture more efficiently the most discriminative information. The results obtained show that our proposed algorithm outperforms other similar methods

    Automated classification of cancer tissues using multispectral imagery

    Get PDF
    Automated classification of medical images for colorectal and prostate cancer diagnosis is a crucial tool for improving routine diagnosis decisions. Therefore, in the last few decades, there has been an increasing interest in refining and adapting machine learning algorithms to classify microscopic images of tumour biopsies. Recently, multispectral imagery has received a significant interest from the research community due to the fast-growing development of high-performance computers. This thesis investigates novel algorithms for automatic classification of colorectal and prostate cancer using multispectral imagery in order to propose a system outperforming the state-of-the-art techniques in the field. To achieve this objective, several feature extraction methods based on image texture have been investigated, analysed and evaluated. A novel texture feature for multispectral images is also constructed as an adaptation of the local binary pattern texture feature to multispectral images by expanding the pixels neighbourhood to the spectral dimension. It has the advantage of capturing the multispectral information with a limited feature vector size. This feature has demonstrated improved classification results when compared against traditional texture features. In order to further enhance the systems performance, advanced classification schemes such as bag-of-features - to better capture local information - and stacked generalisation - to select the most discriminative texture features - are explored and evaluated. Finally, the recent years have seen an accelerated and exponential rise of deep learning, boosted by the advances in hardware, and more specifically graphics processing units. Such models have demonstrated excellent results for supervised learning in multiple applications. This observation has motivated the employment in this thesis of deep neural network architectures, namely convolutional neural networks. Experiments were also carried out to evaluate and compare the performance obtained with the features extracted using convolutional neural networks with random initialisation against features extracted with pre-trained models on ImageNet dataset. The analysis of the classication accuracy achieved with deep learning models reveals that the latter outperforms the previously proposed texture extraction methods. In this thesis, the algorithms are assessed using two separate multiclass datasets: the first one consists of prostate tumour multispectral images, and the second contains multispectral images of colorectal tumours. The colorectal dataset was acquired on a wide domain of the light spectrum ranging from the visible to the infrared wavelengths. This dataset was used to demonstrate the improved results produced using infrared light as well as visible light

    Machine Learning for Prostate Histopathology Assessment

    Get PDF
    Pathology reporting on radical prostatectomy (RP) specimens is essential to post-surgery patient care. However, current pathology interpretation of RP sections is typically qualitative and subject to intra- and inter-observer variability, which challenges quantitative and repeatable reporting of lesion grade, size, location, and spread. Therefore, we developed and validated a software platform that can automatically detect and grade cancerous regions on whole slide images (WSIs) of whole-mount RP sections to support quantitative and visual reporting. Our study used hæmatoxylin- and eosin-stained WSIs from 299 whole-mount RP sections from 71 patients, comprising 1.2 million 480μm×480μm regions-of-interest (ROIs) covering benign and cancerous tissues which contain all clinically relevant grade groups. Each cancerous region was annotated and graded by an expert genitourinary pathologist. We used a machine learning approach with 7 different classifiers (3 non-deep learning and 4 deep learning) to classify: 1) each ROI as cancerous vs. non-cancerous, and 2) each cancerous ROI as high- vs. low-grade. Since recent studies found some subtypes beyond Gleason grade to have independent prognostic value, we also used one deep learning method to classify each cancerous ROI from 87 RP sections of 25 patients as each of eight subtypes to support further clinical pathology research on this topic. We cross-validated each system against the expert annotations. To compensate for the staining variability across different WSIs from different patients, we computed the tissue component map (TCM) using our proposed adaptive thresholding algorithm to label nucleus pixels, global thresholding to label lumen pixels, and assigning the rest as stroma/other. Fine-tuning AlexNet with ROIs of the TCM yielded the best results for prostate cancer (PCa) detection and grading, with areas under the receiver operating characteristic curve (AUCs) of 0.98 and 0.93, respectively, followed by fine-tuned AlexNet with ROIs of the raw image. For subtype grading, fine-tuning AlexNet with ROIs of the raw image yielded AUCs ≥ 0.7 for seven of eight subtypes. To conclude, deep learning approaches outperformed non-deep learning approaches for PCa detection and grading. The TCMs provided the primary cues for PCa detection and grading. Machine learning can be used for subtype grading beyond the Gleason grading system

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Automatic classification of colorectal and prostatic histologic tumor images using multiscale multispectral local binary pattern texture features and stacked generalization

    No full text
    This paper proposes a new multispectral multiscale local binary pattern feature extraction method for automatic classification of colorectal and prostatic tumor biopsies samples. A multilevel stacked generalization classification technique is also proposed and the key idea of the paper considers a grade diagnostic problem rather than a simple malignant versus tumorous tissue problem using the concept of multispectral imagery in both the visible and near infrared spectra. To validate the proposed algorithm performances, a comparative study against related works using multispectral imagery is conducted including an evaluation on three different multiclass datasets of multispectral histology images: two representing images of colorectal biopsies - one dataset was acquired in the visible spectrum while the second captures near-infrared spectra. The proposed algorithm achieves an accuracy of 99.6% on the different datasets. The results obtained demonstrate the advantages of infrared wavelengths to capture more efficiently the most discriminative information. The results obtained show that our proposed algorithm outperforms other similar methods. 2017This work is supported by the Qatar National Research Fund through National Priority Research Program (NPRP) No 6-249-1-053 . The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund or Qatar University. Appendix
    corecore