42 research outputs found

    Data-driven corpus callosum parcellation method through diffusion tensor imaging

    Get PDF
    The corpus callosum (CC) is a set of neural fibers in the cerebral cortex, responsible for facilitating inter-hemispheric communication. The CC structural characteristics appear as an essential element for studying healthy subjects and patients diagnosed with neurodegenerative diseases. Due to its size, the CC is usually divided into smaller regions, also known as parcellation. Since there are no visible landmarks inside the structure indicating its division, CC parcellation is a challenging task and methods proposed in the literature are geometric or atlas-based. This paper proposed an automatic data-driven CC parcellation method, based on diffusion data extracted from diffusion tensor imaging that uses the Watershed transform. Experiments compared parcellation results of the proposed method with results of three other parcellation methods on a data set containing 150 images. Quantitative comparison using the Dice coefficient showed that the CC parcels given by the proposed method has a mean overlap higher than 0,9 for some parcels and lower than 0,6 for other parcels. Poor overlap results were confirmed by the statistically significant differences obtained for diffusion metrics values in each parcel, when using different parcellation methods. The proposed method was also validated by using the CC tractography and was the only study that proposed a non-geometric approach for the CC parcellation, based only on the diffusion data of each subject analyzed59Advanced signal processing methods in medical imaging2242122432COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPnão tem2013/07559-

    Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

    Get PDF
    Abstract Background This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Methods Nineteen patients with histologically confirmed treatment naïve glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Results Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. Conclusions The proposed method and similarity measure segment corpus callosum by propagating a hyper-surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity)

    A CAD system for early diagnosis of autism using different imaging modalities.

    Get PDF
    The term “autism spectrum disorder” (ASD) refers to a collection of neuro-developmental disorders that affect linguistic, behavioral, and social skills. Autism has many symptoms, most prominently, social impairment and repetitive behaviors. It is crucial to diagnose autism at an early stage for better assessment and investigation of this complex syndrome. There have been a lot of efforts to diagnose ASD using different techniques, such as imaging modalities, genetic techniques, and behavior reports. Imaging modalities have been extensively exploited for ASD diagnosis, and one of the most successful ones is Magnetic resonance imaging(MRI),where it has shown promise for the early diagnosis of the ASD related abnormalities in particular. Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. After the advent in the nineteen eighties, MRI soon became one of the most promising non- invasive modalities for visualization and diagnostics of ASD-related abnormalities. Along with its main advantage of no exposure to radiation, high contrast, and spatial resolution, the recent advances to MRI modalities have notably increased diagnostic certainty. Multiple MRI modalities, such as different types of structural MRI (sMRI) that examines anatomical changes, and functional MRI (fMRI) that examines brain activity by monitoring blood flow changes,have been employed to investigate facets of ASD in order to better understand this complex syndrome. This work aims at developing a new computer-aided diagnostic (CAD) system for autism diagnosis using different imaging modalities. It mainly relies on making use of structural magnetic resonance images for extracting notable shape features from parts of the brainthat proved to correlate with ASD from previous neuropathological studies. Shape features from both the cerebral cortex (Cx) and cerebral white matter(CWM)are extracted. Fusion of features from these two structures is conducted based on the recent findings suggesting that Cx changes in autism are related to CWM abnormalities. Also, when fusing features from more than one structure, this would increase the robustness of the CAD system. Moreover, fMRI experiments are done and analyzed to find areas of activation in the brains of autistic and typically developing individuals that are related to a specific task. All sMRI findings are fused with those of fMRI to better understand ASD in terms of both anatomy and functionality,and thus better classify the two groups. This is one aspect of the novelty of this CAD system, where sMRI and fMRI studies are both applied on subjects from different ages to diagnose ASD. In order to build such a CAD system, three main blocks are required. First, 3D brain segmentation is applied using a novel hybrid model that combines shape, intensity, and spatial information. Second, shape features from both Cx and CWM are extracted and anf MRI reward experiment is conducted from which areas of activation that are related to the task of this experiment are identified. Those features were extracted from local areas of the brain to provide an accurate analysis of ASD and correlate it with certain anatomical areas. Third and last, fusion of all the extracted features is done using a deep-fusion classification network to perform classification and obtain the diagnosis report. Fusing features from all modalities achieved a classification accuracy of 94.7%, which emphasizes the significance of combining structures/modalities for ASD diagnosis. To conclude, this work could pave the pathway for better understanding of the autism spectrum by finding local areas that correlate to the disease. The idea of personalized medicine is emphasized in this work, where the proposed CAD system holds the promise to resolve autism endophenotypes and help clinicians deliver personalized treatment to individuals affected with this complex syndrome

    Anisotropy Across Fields and Scales

    Get PDF
    This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28–November 2, 2018

    Global brain connectivity analysis by diffusion MR tractography:algorithms, validation and applications

    Get PDF
    The human cerebral cortex consists of approximately 1010 neurons that are organized into a complex network of local circuits and long-range connections. During the past years there has been an increasing interest from the neuro-scientific community towards the study of this network, referred to as the human connectome. Due to its ability to probe the tissue microstructure in vivo and non invasively, diffusion MRI has revealed to be a helpful tool for the analysis of brain axonal pathways at the millimeter scale. Whereas the neuronal level remains unreachable, diffusion MRI enables the mapping of a low-resolution estimate of the human connectome, which should give a new breath to the study of normal or pathologic neuroanatomy. After a short introduction on diffusion MRI and tractography, the process by which fiber tracts are reconstructed from the diffusion images, we present a methodology allowing the creation of normalized whole-brain structural connection matrices derived from tractography and representing the human connectome. Based on the developed framework we then investigate the potential of front propagation algorithms in tractography. We compare their performance with classical tractography approaches on several well-known associative fiber pathways, and we discuss their advantages and limitations. Several solutions are proposed in order to evaluate and validate the connectome-related methodology. We develop a method to estimate the respective contributions of diffusion contrast versus other effects to a tractography result. Using this methodology, we show that whereas we can have a strong confidence in mid- and long-range connections, short-range connectivity has to be interpreted with care. Next, we demonstrate the strong relationship between the structural connectivity obtained from diffusion MR tractography and the functional connectivity measured with functional MRI. Then, we compare the performance of several diffusion MRI techniques through connectome-based measurements. We find that diffusion spectrum imaging is more sensitive and therefore enhances the results of tractography. Finally, we present two network-oriented applications. We use the human connectome to reveal the small-world architecture of the brain, a very efficient network topology in terms of wiring and power supply. We identify the cortical areas that belong to the core of structural connectivity. We show that these regions also belong to the default mode network, a set of dynamically coupled brain regions that are found to be more highly activated at rest. As a conclusion, we emphasize the potential of human connectome mapping for clinical applications and pathological studies

    Anisotropy Across Fields and Scales

    Get PDF
    This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28–November 2, 2018

    Quantitative analysis of cerebral white matter anatomy from diffusion MRI

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 165-177).In this thesis we develop algorithms for quantitative analysis of white matter fiber tracts from diffusion MRI. The presented methods enable us to look at the variation of a diffusion measure along a fiber tract in a single subject or a population, which allows important clinical studies toward understanding the relation between the changes in the diffusion measures and brain diseases, development, and aging. The proposed quantitative analysis is performed on a group of fiber trajectories extracted from diffusion MRI by a process called tractography. To enable the quantitative analysis we first need to cluster similar trajectories into groups that correspond to anatomical bundles and to establish the point correspondence between these variable-length trajectories. We propose a computationally-efficient approach to find the point correspondence and the distance between each trajectory to the prototype center of each bundle. Based on the computed distances we also develop a novel model-based clustering of trajectories into anatomically-known fiber bundles. In order to cluster the trajectories, we formulate an expectation maximization algorithm to infer the parameters of the gamma-mixture model that we built on the distances between trajectories and cluster centers. We also extend the proposed clustering algorithm to incorporate spatial anatomical information at different levels through hierarchical Bayesian modeling. We demonstrate the effectiveness of the proposed methods in several clinical applications. In particular, we present our findings in identifying localized group differences in fiber tracts between normal and schizophrenic populations.by Mahnaz Maddah.Ph.D

    Micro-, Meso- and Macro-Connectomics of the Brain

    Get PDF
    Neurosciences, Neurolog

    Proceedings of the Fourth International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Biological Shape Variability Modeling (MFCA 2013), Nagoya, Japan

    Get PDF
    International audienceComputational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model the organ development across time (growth or aging), to establish their variability, and to correlate this variability information with other functional, genetic or structural information. The Mathematical Foundations of Computational Anatomy (MFCA) workshop aims at fostering the interactions between the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum for the exchange of the theoretical ideas and aims at being a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the first edition of this workshop in 2006, second edition in New-York in 2008, the third edition in Toronto in 2011, the forth edition was held in Nagoya Japan on September 22 2013
    corecore