50 research outputs found

    Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions

    Full text link
    Heavy smokers undergoing screening with low-dose chest CT are affected by cardiovascular disease as much as by lung cancer. Low-dose chest CT scans acquired in screening enable quantification of atherosclerotic calcifications and thus enable identification of subjects at increased cardiovascular risk. This paper presents a method for automatic detection of coronary artery, thoracic aorta and cardiac valve calcifications in low-dose chest CT using two consecutive convolutional neural networks. The first network identifies and labels potential calcifications according to their anatomical location and the second network identifies true calcifications among the detected candidates. This method was trained and evaluated on a set of 1744 CT scans from the National Lung Screening Trial. To determine whether any reconstruction or only images reconstructed with soft tissue filters can be used for calcification detection, we evaluated the method on soft and medium/sharp filter reconstructions separately. On soft filter reconstructions, the method achieved F1 scores of 0.89, 0.89, 0.67, and 0.55 for coronary artery, thoracic aorta, aortic valve and mitral valve calcifications, respectively. On sharp filter reconstructions, the F1 scores were 0.84, 0.81, 0.64, and 0.66, respectively. Linearly weighted kappa coefficients for risk category assignment based on per subject coronary artery calcium were 0.91 and 0.90 for soft and sharp filter reconstructions, respectively. These results demonstrate that the presented method enables reliable automatic cardiovascular risk assessment in all low-dose chest CT scans acquired for lung cancer screening

    Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium

    Get PDF
    Purpose: Coronary artery calcium (CAC) score has shown to be an accurate predictor of future cardiovascular events. Early detection by CAC scoring might reduce the number of deaths by cardiovascular disease (CVD). Automatically excluding scans which test negative for CAC could significantly reduce the workload of radiologists. We propose an algorithm that both excludes negative scans and segments the CAC. Method: The training and internal validation data were collected from the ROBINSCA study. The external validation data were collected from the ImaLife study. Both contain annotated low-dose non-contrast cardiac CT scans. 60 scans of participants were used for training and 2 sets of 50 CT scans of participants without CAC and 50 CT scans of participants with an Agatston score between 10 and 20 were collected for both internal and external validation. The effect of dilated convolutional layers was tested by using 2 CNN architectures. We used the patient-level accuracy as metric for assessing the accuracy of our pipeline for detection of CAC and the Dice coefficient score as metric for the segmentation of CAC. Results: Of the 50 negative cases in the internal and external validation set, 62 % and 86 % were classified correctly, respectively. There were no false negative predictions. For the segmentation task, Dice Coefficient scores of 0.63 and 0.84 were achieved for the internal and external validation datasets, respectively. Conclusions: Our algorithm excluded 86 % of all scans without CAC. Radiologists might need to spend less time on participants without CAC and could spend more time on participants that need their attention

    Automated detection method of thoracic aorta calcification from non-contrast CT images using mediastinal anatomical label map

    Get PDF
    Progression of thoracic aortic calcification (TAC) has been shown to be associated with hard cardiovascular events including stroke and all-cause mortality as well as coronary events. In this study, we propose an automated detection method of TACs of non-contrast CT images using mediastinal anatomical label map. This method consists of two steps: (1) the construction of a mediastinal anatomical label map, and (2) the detection of TACs using the intensity and the mediastinal anatomical label map. The proposed method was applied to two non-contrast CT image datasets: 24 cases of chronic thromboembolic pulmonary hypertension (CTEPH) and 100 non-CTEPH cases of low-dose CT screening. The method was compared with two-dimensional U-Nets and the Swin UNETR. The results showed that the method achieved significantly higher F1 score of 0.937 than other methods for the non-CTEPH case dataset (p-value < 0.05, pairwise Wilcoxon signed rank test with Bonferroni correction)

    Classification of moving coronary calcified plaques based on motion artifacts using convolutional neural networks:a robotic simulating study on influential factors

    Get PDF
    Abstract Background Motion artifacts affect the images of coronary calcified plaques. This study utilized convolutional neural networks (CNNs) to classify the motion-contaminated images of moving coronary calcified plaques and to determine the influential factors for the classification performance. Methods Two artificial coronary arteries containing four artificial plaques of different densities were placed on a robotic arm in an anthropomorphic thorax phantom. Each artery moved linearly at velocities ranging from 0 to 60 mm/s. CT examinations were performed with four state-of-the-art CT systems. All images were reconstructed with filtered back projection and at least three levels of iterative reconstruction. Each examination was performed at 100%, 80% and 40% radiation dose. Three deep CNN architectures were used for training the classification models. A five-fold cross-validation procedure was applied to validate the models. Results The accuracy of the CNN classification was 90.2 ± 3.1%, 90.6 ± 3.5%, and 90.1 ± 3.2% for the artificial plaques using Inception v3, ResNet101 and DenseNet201 CNN architectures, respectively. In the multivariate analysis, higher density and increasing velocity were significantly associated with higher classification accuracy (all P  0.05). Conclusions The CNN achieved a high accuracy of 90% when classifying the motion-contaminated images into the actual category, regardless of different vendors, velocities, radiation doses, and reconstruction algorithms, which indicates the potential value of using a CNN to correct calcium scores

    Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients

    Get PDF
    Arterial calcification is an independent predictor of cardiovascular disease (CVD) events whereas thoracic aorta calcium (TAC) detection might anticipate extracoronary outcomes. In this work, we trained six convolutional neural networks (CNNs) to detect aortic calcifications and to automate the TAC score assessment in intermediate CVD risk patients. Cardiac computed tomography images from 1415 patients were analyzed together with their aortic geometry previously assessed. Orthogonal patches centered in each aortic candidate lesion were reconstructed and a dataset with 19,790 images (61% positives) was built. Three single-input 2D CNNs were trained using axial, coronal and sagittal patches together with two multi-input 2.5D CNNs combining the orthogonal patches and identifying their best regional combination (BRC) in terms of lesion location. Aortic calcifications were concentrated in the descending (66%) and aortic arch (26%) portions. The BRC of axial patches to detect ascending or aortic arch lesions and sagittal images for the descending portion had the best performance: 0.954 F1-Score, 98.4% sensitivity, 87% of the subjects correctly classified in their TAC category and an average false positive TAC score per patient of 30. A CNN that combined axial and sagittal patches depending on the candidate aortic location ensured an accurate TAC score prediction.Fil: Guilenea, Federico Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Casciaro, Mariano Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Pascaner, Ariel Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Soulat, Gilles. Hopital Europeen Georges Pompidou; FranciaFil: Mousseaux, Elie. Hopital Europeen Georges Pompidou; FranciaFil: Craiem, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentin

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    corecore