698 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    3D Multimodal Brain Tumor Segmentation and Grading Scheme based on Machine, Deep, and Transfer Learning Approaches

    Get PDF
    Glioma is one of the most common tumors of the brain. The detection and grading of glioma at an early stage is very critical for increasing the survival rate of the patients. Computer-aided detection (CADe) and computer-aided diagnosis (CADx) systems are essential and important tools that provide more accurate and systematic results to speed up the decision-making process of clinicians. In this paper, we introduce a method consisting of the variations of the machine, deep, and transfer learning approaches for the effective brain tumor (i.e., glioma) segmentation and grading on the multimodal brain tumor segmentation (BRATS) 2020 dataset. We apply popular and efficient 3D U-Net architecture for the brain tumor segmentation phase. We also utilize 23 different combinations of deep feature sets and machine learning/fine-tuned deep learning CNN models based on Xception, IncResNetv2, and EfficientNet by using 4 different feature sets and 6 learning models for the tumor grading phase. The experimental results demonstrate that the proposed method achieves 99.5% accuracy rate for slice-based tumor grading on BraTS 2020 dataset. Moreover, our method is found to have competitive performance with similar recent works

    Automated brain tumour identification using magnetic resonance imaging:a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Automated brain tumor identification facilitates diagnosis and treatment planning. We evaluate the performance of traditional machine learning (TML) and deep learning (DL) in brain tumor detection and segmentation, using MRI. METHODS: A systematic literature search from January 2000 to May 8, 2021 was conducted. Study quality was assessed using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Detection meta-analysis was performed using a unified hierarchical model. Segmentation studies were evaluated using a random effects model. Sensitivity analysis was performed for externally validated studies. RESULTS: Of 224 studies included in the systematic review, 46 segmentation and 38 detection studies were eligible for meta-analysis. In detection, DL achieved a lower false positive rate compared to TML; 0.018 (95% CI, 0.011 to 0.028) and 0.048 (0.032 to 0.072) (P < .001), respectively. In segmentation, DL had a higher dice similarity coefficient (DSC), particularly for tumor core (TC); 0.80 (0.77 to 0.83) and 0.63 (0.56 to 0.71) (P < .001), persisting on sensitivity analysis. Both manual and automated whole tumor (WT) segmentation had “good” (DSC ≥ 0.70) performance. Manual TC segmentation was superior to automated; 0.78 (0.69 to 0.86) and 0.64 (0.53 to 0.74) (P = .014), respectively. Only 30% of studies reported external validation. CONCLUSIONS: The comparable performance of automated to manual WT segmentation supports its integration into clinical practice. However, manual outperformance for sub-compartmental segmentation highlights the need for further development of automated methods in this area. Compared to TML, DL provided superior performance for detection and sub-compartmental segmentation. Improvements in the quality and design of studies, including external validation, are required for the interpretability and generalizability of automated models

    Longitudinal Brain Tumor Tracking, Tumor Grading, and Patient Survival Prediction Using MRI

    Get PDF
    This work aims to develop novel methods for brain tumor classification, longitudinal brain tumor tracking, and patient survival prediction. Consequently, this dissertation proposes three tasks. First, we develop a framework for brain tumor segmentation prediction in longitudinal multimodal magnetic resonance imaging (mMRI) scans, comprising two methods: feature fusion and joint label fusion (JLF). The first method fuses stochastic multi-resolution texture features with tumor cell density features, in order to obtain tumor segmentation predictions in follow-up scans from a baseline pre-operative timepoint. The second method utilizes JLF to combine segmentation labels obtained from (i) the stochastic texture feature-based and Random Forest (RF)-based tumor segmentation method; and (ii) another state-of-the-art tumor growth and segmentation method known as boosted Glioma Image Segmentation and Registration (GLISTRboost, or GB). With the advantages of feature fusion and label fusion, we achieve state-of-the-art brain tumor segmentation prediction. Second, we propose a deep neural network (DNN) learning-based method for brain tumor type and subtype grading using phenotypic and genotypic data, following the World Health Organization (WHO) criteria. In addition, the classification method integrates a cellularity feature which is derived from the morphology of a pathology image to improve classification performance. The proposed method achieves state-of-the-art performance for tumor grading following the new CNS tumor grading criteria. Finally, we investigate brain tumor volume segmentation, tumor subtype classification, and overall patient survival prediction, and then we propose a new context- aware deep learning method, known as the Context Aware Convolutional Neural Network (CANet). Using the proposed method, we participated in the Multimodal Brain Tumor Segmentation Challenge 2019 (BraTS 2019) for brain tumor volume segmentation and overall survival prediction tasks. In addition, we also participated in the Radiology-Pathology Challenge 2019 (CPM-RadPath 2019) for Brain Tumor Subtype Classification, organized by the Medical Image Computing & Computer Assisted Intervention (MICCAI) Society. The online evaluation results show that the proposed methods offer competitive performance from their use of state-of-the-art methods in tumor volume segmentation, promising performance on overall survival prediction, and state-of-the-art performance on tumor subtype classification. Moreover, our result was ranked second place in the testing phase of the CPM-RadPath 2019

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Full text link
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho

    An Automated Abnormality Diagnosis and Classi?cation in Brain MRI using Deep Learning

    Get PDF
    A technique for recognising and labeling malignant brain tissues according to the types of tumours present is known as tumour classification. Magnetic resonance imaging (MRI) can be used in clinical settings to both diagnose and treat gliomas. For clinical diagnosis and treatment planning, the ability to correctly diagnose a brain tumour from MRI images is essential. Manual classification, however, is not feasible in a timely manner due to the enormous volume of data produced by MRI. For classification and segmentation, it is required to employ automated algorithms. However, the numerous spatial and anatomical differences present in brain tumours make MRI image segmentation challenging. We have created a unique CNN architecture for classifying three different types of brain cancers. The new network was demonstrated to be more straightforward than earlier networks using MRI images with contrast-enhanced T1 pictures. Two 10-fold cross-validation techniques, two datasets, and an evaluation of the network's performance were used. A piece of upgraded picture information is used to assess the transferability of the network as part of the subject-cross-validation process. When used for record-wise cross-validation, this method of tenfold cross-validation ground set has an accuracy rate of 92.65 percent. Radiologists who operate in the ground of medical diagnostics may find the newly proposed CNN architecture to be a helpful decision-support tool due to its new transferability capability and speedy execution.

    Deep Learning versus Classical Regression for Brain Tumor Patient Survival Prediction

    Full text link
    Deep learning for regression tasks on medical imaging data has shown promising results. However, compared to other approaches, their power is strongly linked to the dataset size. In this study, we evaluate 3D-convolutional neural networks (CNNs) and classical regression methods with hand-crafted features for survival time regression of patients with high grade brain tumors. The tested CNNs for regression showed promising but unstable results. The best performing deep learning approach reached an accuracy of 51.5% on held-out samples of the training set. All tested deep learning experiments were outperformed by a Support Vector Classifier (SVC) using 30 radiomic features. The investigated features included intensity, shape, location and deep features. The submitted method to the BraTS 2018 survival prediction challenge is an ensemble of SVCs, which reached a cross-validated accuracy of 72.2% on the BraTS 2018 training set, 57.1% on the validation set, and 42.9% on the testing set. The results suggest that more training data is necessary for a stable performance of a CNN model for direct regression from magnetic resonance images, and that non-imaging clinical patient information is crucial along with imaging information.Comment: Contribution to The International Multimodal Brain Tumor Segmentation (BraTS) Challenge 2018, survival prediction tas
    • …
    corecore