16,173 research outputs found

    Mini-Unmanned Aerial Vehicle-Based Remote Sensing: Techniques, Applications, and Prospects

    Full text link
    The past few decades have witnessed the great progress of unmanned aircraft vehicles (UAVs) in civilian fields, especially in photogrammetry and remote sensing. In contrast with the platforms of manned aircraft and satellite, the UAV platform holds many promising characteristics: flexibility, efficiency, high-spatial/temporal resolution, low cost, easy operation, etc., which make it an effective complement to other remote-sensing platforms and a cost-effective means for remote sensing. Considering the popularity and expansion of UAV-based remote sensing in recent years, this paper provides a systematic survey on the recent advances and future prospectives of UAVs in the remote-sensing community. Specifically, the main challenges and key technologies of remote-sensing data processing based on UAVs are discussed and summarized firstly. Then, we provide an overview of the widespread applications of UAVs in remote sensing. Finally, some prospects for future work are discussed. We hope this paper will provide remote-sensing researchers an overall picture of recent UAV-based remote sensing developments and help guide the further research on this topic

    Face Recognition in Low Quality Images: A Survey

    Full text link
    Low-resolution face recognition (LRFR) has received increasing attention over the past few years. Its applications lie widely in the real-world environment when high-resolution or high-quality images are hard to capture. One of the biggest demands for LRFR technologies is video surveillance. As the the number of surveillance cameras in the city increases, the videos that captured will need to be processed automatically. However, those videos or images are usually captured with large standoffs, arbitrary illumination condition, and diverse angles of view. Faces in these images are generally small in size. Several studies addressed this problem employed techniques like super resolution, deblurring, or learning a relationship between different resolution domains. In this paper, we provide a comprehensive review of approaches to low-resolution face recognition in the past five years. First, a general problem definition is given. Later, systematically analysis of the works on this topic is presented by catogory. In addition to describing the methods, we also focus on datasets and experiment settings. We further address the related works on unconstrained low-resolution face recognition and compare them with the result that use synthetic low-resolution data. Finally, we summarized the general limitations and speculate a priorities for the future effort.Comment: There are some mistakes addressing in this paper which will be misleading to the reader and we wont have a new version in short time. We will resubmit once it is being corecte

    Dense Haze: A benchmark for image dehazing with dense-haze and haze-free images

    Full text link
    Single image dehazing is an ill-posed problem that has recently drawn important attention. Despite the significant increase in interest shown for dehazing over the past few years, the validation of the dehazing methods remains largely unsatisfactory, due to the lack of pairs of real hazy and corresponding haze-free reference images. To address this limitation, we introduce Dense-Haze - a novel dehazing dataset. Characterized by dense and homogeneous hazy scenes, Dense-Haze contains 33 pairs of real hazy and corresponding haze-free images of various outdoor scenes. The hazy scenes have been recorded by introducing real haze, generated by professional haze machines. The hazy and haze-free corresponding scenes contain the same visual content captured under the same illumination parameters. Dense-Haze dataset aims to push significantly the state-of-the-art in single-image dehazing by promoting robust methods for real and various hazy scenes. We also provide a comprehensive qualitative and quantitative evaluation of state-of-the-art single image dehazing techniques based on the Dense-Haze dataset. Not surprisingly, our study reveals that the existing dehazing techniques perform poorly for dense homogeneous hazy scenes and that there is still much room for improvement.Comment: 5 pages, 2 figure

    Real-world Underwater Enhancement: Challenges, Benchmarks, and Solutions

    Full text link
    Underwater image enhancement is such an important low-level vision task with many applications that numerous algorithms have been proposed in recent years. These algorithms developed upon various assumptions demonstrate successes from various aspects using different data sets and different metrics. In this work, we setup an undersea image capturing system, and construct a large-scale Real-world Underwater Image Enhancement (RUIE) data set divided into three subsets. The three subsets target at three challenging aspects for enhancement, i.e., image visibility quality, color casts, and higher-level detection/classification, respectively. We conduct extensive and systematic experiments on RUIE to evaluate the effectiveness and limitations of various algorithms to enhance visibility and correct color casts on images with hierarchical categories of degradation. Moreover, underwater image enhancement in practice usually serves as a preprocessing step for mid-level and high-level vision tasks. We thus exploit the object detection performance on enhanced images as a brand new task-specific evaluation criterion. The findings from these evaluations not only confirm what is commonly believed, but also suggest promising solutions and new directions for visibility enhancement, color correction, and object detection on real-world underwater images.Comment: arXiv admin note: text overlap with arXiv:1712.04143 by other author

    Benchmarking Single Image Dehazing and Beyond

    Full text link
    We present a comprehensive study and evaluation of existing single image dehazing algorithms, using a new large-scale benchmark consisting of both synthetic and real-world hazy images, called REalistic Single Image DEhazing (RESIDE). RESIDE highlights diverse data sources and image contents, and is divided into five subsets, each serving different training or evaluation purposes. We further provide a rich variety of criteria for dehazing algorithm evaluation, ranging from full-reference metrics, to no-reference metrics, to subjective evaluation and the novel task-driven evaluation. Experiments on RESIDE shed light on the comparisons and limitations of state-of-the-art dehazing algorithms, and suggest promising future directions.Comment: IEEE Transactions on Image Processing(TIP 2019

    An All-in-One Network for Dehazing and Beyond

    Full text link
    This paper proposes an image dehazing model built with a convolutional neural network (CNN), called All-in-One Dehazing Network (AOD-Net). It is designed based on a re-formulated atmospheric scattering model. Instead of estimating the transmission matrix and the atmospheric light separately as most previous models did, AOD-Net directly generates the clean image through a light-weight CNN. Such a novel end-to-end design makes it easy to embed AOD-Net into other deep models, e.g., Faster R-CNN, for improving high-level task performance on hazy images. Experimental results on both synthesized and natural hazy image datasets demonstrate our superior performance than the state-of-the-art in terms of PSNR, SSIM and the subjective visual quality. Furthermore, when concatenating AOD-Net with Faster R-CNN and training the joint pipeline from end to end, we witness a large improvement of the object detection performance on hazy images

    Convolutional Sparse Coding for Compressed Sensing CT Reconstruction

    Full text link
    Over the past few years, dictionary learning (DL)-based methods have been successfully used in various image reconstruction problems. However, traditional DL-based computed tomography (CT) reconstruction methods are patch-based and ignore the consistency of pixels in overlapped patches. In addition, the features learned by these methods always contain shifted versions of the same features. In recent years, convolutional sparse coding (CSC) has been developed to address these problems. In this paper, inspired by several successful applications of CSC in the field of signal processing, we explore the potential of CSC in sparse-view CT reconstruction. By directly working on the whole image, without the necessity of dividing the image into overlapped patches in DL-based methods, the proposed methods can maintain more details and avoid artifacts caused by patch aggregation. With predetermined filters, an alternating scheme is developed to optimize the objective function. Extensive experiments with simulated and real CT data were performed to validate the effectiveness of the proposed methods. Qualitative and quantitative results demonstrate that the proposed methods achieve better performance than several existing state-of-the-art methods.Comment: Accepted by IEEE TM

    Bridging the Gap Between Computational Photography and Visual Recognition

    Full text link
    What is the current state-of-the-art for image restoration and enhancement applied to degraded images acquired under less than ideal circumstances? Can the application of such algorithms as a pre-processing step to improve image interpretability for manual analysis or automatic visual recognition to classify scene content? While there have been important advances in the area of computational photography to restore or enhance the visual quality of an image, the capabilities of such techniques have not always translated in a useful way to visual recognition tasks. Consequently, there is a pressing need for the development of algorithms that are designed for the joint problem of improving visual appearance and recognition, which will be an enabling factor for the deployment of visual recognition tools in many real-world scenarios. To address this, we introduce the UG^2 dataset as a large-scale benchmark composed of video imagery captured under challenging conditions, and two enhancement tasks designed to test algorithmic impact on visual quality and automatic object recognition. Furthermore, we propose a set of metrics to evaluate the joint improvement of such tasks as well as individual algorithmic advances, including a novel psychophysics-based evaluation regime for human assessment and a realistic set of quantitative measures for object recognition performance. We introduce six new algorithms for image restoration or enhancement, which were created as part of the IARPA sponsored UG^2 Challenge workshop held at CVPR 2018. Under the proposed evaluation regime, we present an in-depth analysis of these algorithms and a host of deep learning-based and classic baseline approaches. From the observed results, it is evident that we are in the early days of building a bridge between computational photography and visual recognition, leaving many opportunities for innovation in this area.Comment: CVPR Prize Challenge: http://www.ug2challenge.or

    Does Haze Removal Help CNN-based Image Classification?

    Full text link
    Hazy images are common in real scenarios and many dehazing methods have been developed to automatically remove the haze from images. Typically, the goal of image dehazing is to produce clearer images from which human vision can better identify the object and structural details present in the images. When the ground-truth haze-free image is available for a hazy image, quantitative evaluation of image dehazing is usually based on objective metrics, such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). However, in many applications, large-scale images are collected not for visual examination by human. Instead, they are used for many high-level vision tasks, such as automatic classification, recognition and categorization. One fundamental problem here is whether various dehazing methods can produce clearer images that can help improve the performance of the high-level tasks. In this paper, we empirically study this problem in the important task of image classification by using both synthetic and real hazy image datasets. From the experimental results, we find that the existing image-dehazing methods cannot improve much the image-classification performance and sometimes even reduce the image-classification performance

    Automatic Region-wise Spatially Varying Coefficient Regression Model: an Application to National Cardiovascular Disease Mortality and Air Pollution Association Study

    Full text link
    Motivated by analyzing a national data base of annual air pollution and cardiovascular disease mortality rate for 3100 counties in the U.S. (areal data), we develop a novel statistical framework to automatically detect spatially varying region-wise associations between air pollution exposures and health outcomes. The automatic region-wise spatially varying coefficient model consists three parts: we first compute the similarity matrix between the exposure-health outcome associations of all spatial units, then segment the whole map into a set of disjoint regions based on the adjacency matrix with constraints that all spatial units within a region are contiguous and have similar association, and lastly estimate the region specific associations between exposure and health outcome. We implement the framework by using regression and spectral graph techniques. We develop goodness of fit criteria for model assessment and model selection. The simulation study confirms the satisfactory performance of our model. We further employ our method to investigate the association between airborne particulate matter smaller than 2.5 microns (PM 2.5) and cardiovascular disease mortality. The results successfully identify regions with distinct associations between the mortality rate and PM 2.5 that may provide insightful guidance for environmental health research
    corecore