6,377 research outputs found

    Avast-CTU Public CAPE Dataset

    Full text link
    There is a limited amount of publicly available data to support research in malware analysis technology. Particularly, there are virtually no publicly available datasets generated from rich sandboxes such as Cuckoo/CAPE. The benefit of using dynamic sandboxes is the realistic simulation of file execution in the target machine and obtaining a log of such execution. The machine can be infected by malware hence there is a good chance of capturing the malicious behavior in the execution logs, thus allowing researchers to study such behavior in detail. Although the subsequent analysis of log information is extensively covered in industrial cybersecurity backends, to our knowledge there has been only limited effort invested in academia to advance such log analysis capabilities using cutting edge techniques. We make this sample dataset available to support designing new machine learning methods for malware detection, especially for automatic detection of generic malicious behavior. The dataset has been collected in cooperation between Avast Software and Czech Technical University - AI Center (AIC)

    Resilient and Scalable Android Malware Fingerprinting and Detection

    Get PDF
    Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual analysis of such a large volume of malware is daunting and time-consuming. The diversity of targeted systems in terms of architecture and platforms compounds the challenges of Android malware detection and malware in general. This highlights the need to design and implement new scalable and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a malware fingerprinting framework to cover accurate Android malware detection and family attribution. In this context, we emphasize the following: (i) the scalability over a large malware corpus; (ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms and architectures. In the context of bulk and offline detection on the laboratory/vendor level: First, we propose an approximate fingerprinting technique for Android packaging that captures the underlying static structure of the Android apps. We also propose a malware clustering framework on top of this fingerprinting technique to perform unsupervised malware detection and grouping by building and partitioning a similarity network of malicious apps. Second, we propose an approximate fingerprinting technique for Android malware's behavior reports generated using dynamic analyses leveraging natural language processing techniques. Based on this fingerprinting technique, we propose a portable malware detection and family threat attribution framework employing supervised machine learning techniques. Third, we design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis techniques to generate relevant, actionable, and granular intelligence that can be used to identify the threat effects induced by malicious Internet activity associated to Android malicious apps. In the context of the single app and online detection on the mobile device level, we further propose the following: Fourth, we design a portable and effective Android malware detection system that is suitable for deployment on mobile and resource constrained devices, using machine learning classification on raw method call sequences. Fifth, we elaborate a framework for Android malware detection that is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. We also evaluate the portability of the proposed techniques and methods beyond Android platform malware, as follows: Sixth, we leverage the previously elaborated techniques to build a framework for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction with advanced deep learning techniques

    Android Malware Family Classification Based on Resource Consumption over Time

    Full text link
    The vast majority of today's mobile malware targets Android devices. This has pushed the research effort in Android malware analysis in the last years. An important task of malware analysis is the classification of malware samples into known families. Static malware analysis is known to fall short against techniques that change static characteristics of the malware (e.g. code obfuscation), while dynamic analysis has proven effective against such techniques. To the best of our knowledge, the most notable work on Android malware family classification purely based on dynamic analysis is DroidScribe. With respect to DroidScribe, our approach is easier to reproduce. Our methodology only employs publicly available tools, does not require any modification to the emulated environment or Android OS, and can collect data from physical devices. The latter is a key factor, since modern mobile malware can detect the emulated environment and hide their malicious behavior. Our approach relies on resource consumption metrics available from the proc file system. Features are extracted through detrended fluctuation analysis and correlation. Finally, a SVM is employed to classify malware into families. We provide an experimental evaluation on malware samples from the Drebin dataset, where we obtain a classification accuracy of 82%, proving that our methodology achieves an accuracy comparable to that of DroidScribe. Furthermore, we make the software we developed publicly available, to ease the reproducibility of our results.Comment: Extended Versio

    Mal-Netminer: Malware Classification Approach based on Social Network Analysis of System Call Graph

    Get PDF
    As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort, and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that influence-based graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.Comment: Mathematical Problems in Engineering, Vol 201
    • …
    corecore