8,452 research outputs found

    Automatic Amortized Resource Analysis with Regular Recursive Types

    Full text link
    The goal of automatic resource bound analysis is to statically infer symbolic bounds on the resource consumption of the evaluation of a program. A longstanding challenge for automatic resource analysis is the inference of bounds that are functions of complex custom data structures. This article builds on type-based automatic amortized resource analysis (AARA) to address this challenge. AARA is based on the potential method of amortized analysis and reduces bound inference to standard type inference with additional linear constraint solving, even when deriving non-linear bounds. A key component of AARA is resource functions that generate the space of possible bounds for values of a given type while enjoying necessary closure properties. Existing work on AARA defined such functions for many data structures such as lists of lists but the question of whether such functions exist for arbitrary data structures remained open. This work answers this questions positively by uniformly constructing resource polynomials for algebraic data structures defined by regular recursive types. These functions are a generalization of all previously proposed polynomial resource functions and can be seen as a general notion of polynomials for values of a given recursive type. A resource type system for FPC, a core language with recursive types, demonstrates how resource polynomials can be integrated with AARA while preserving all benefits of past techniques. The article also proposes the use of new techniques useful for stating the rules of this type system and proving it sound. First, multivariate potential annotations are stated in terms of free semimodules, substantially abstracting details of the presentation of annotations and the proofs of their properties. Second, a logical relation giving semantic meaning to resource types enables a proof of soundness by a single induction on typing derivations.Comment: 15 pages, 5 figures; to be published in LICS'2

    Typable Fragments of Polynomial Automatic Amortized Resource Analysis

    Get PDF
    Being a fully automated technique for resource analysis, automatic amortized resource analysis (AARA) can fail in returning worst-case cost bounds of programs, fundamentally due to the undecidability of resource analysis. For programmers who are unfamiliar with the technical details of AARA, it is difficult to predict whether a program can be successfully analyzed in AARA. Motivated by this problem, this article identifies classes of programs that can be analyzed in type-based polynomial AARA. Firstly, it is shown that the set of functions that are typable in univariate polynomial AARA coincides with the complexity class PTime. Secondly, the article presents a sufficient condition for typability that axiomatically requires every sub-expression of a given program to be polynomial-time. It is proved that this condition implies typability in multivariate polynomial AARA under some syntactic restrictions

    Bounded Expectations: Resource Analysis for Probabilistic Programs

    Full text link
    This paper presents a new static analysis for deriving upper bounds on the expected resource consumption of probabilistic programs. The analysis is fully automatic and derives symbolic bounds that are multivariate polynomials of the inputs. The new technique combines manual state-of-the-art reasoning techniques for probabilistic programs with an effective method for automatic resource-bound analysis of deterministic programs. It can be seen as both, an extension of automatic amortized resource analysis (AARA) to probabilistic programs and an automation of manual reasoning for probabilistic programs that is based on weakest preconditions. As a result, bound inference can be reduced to off-the-shelf LP solving in many cases and automatically-derived bounds can be interactively extended with standard program logics if the automation fails. Building on existing work, the soundness of the analysis is proved with respect to an operational semantics that is based on Markov decision processes. The effectiveness of the technique is demonstrated with a prototype implementation that is used to automatically analyze 39 challenging probabilistic programs and randomized algorithms. Experimental results indicate that the derived constant factors in the bounds are very precise and even optimal for many programs

    Arrays and References in Resource Aware ML

    Get PDF
    This article introduces a technique to accurately perform static prediction of resource usage for ML-like functional programs with references and arrays. Previous research successfully integrated the potential method of amortized analysis with a standard type system to automatically derive parametric resource bounds. The analysis is naturally compositional and the resource consumption of functions can be abstracted using potential-annotated types. The soundness theorem of the analysis guarantees that the derived bounds are correct with respect to the resource usage defined by a cost semantics. Type inference can be efficiently automated using off-the-shelf LP solvers, even if the derived bounds are polynomials. However, side effects and aliasing of heap references make it notoriously difficult to derive bounds that depend on mutable structures, such as arrays and references. As a result, existing automatic amortized analysis systems for ML-like programs cannot derive bounds for programs whose resource consumption depends on data in such structures. This article extends the potential method to handle mutable structures with minimal changes to the type rules while preserving the stated advantages of amortized analysis. To do so, we introduce a swap operation for references and arrays that users can use to make programs suitable for automatic analysis. We prove the soundness of the analysis introducing a potential-annotated memory typing, which gathers all unique locations reachable from a reference. Apart from the design of the system, the main contribution is the proof of soundness for the extended analysis system

    Types with potential: polynomial resource bounds via automatic amortized analysis

    Get PDF
    A primary feature of a computer program is its quantitative performance characteristics: the amount of resources such as time, memory, and power the program needs to perform its task. Concrete resource bounds for specific hardware have many important applications in software development but their manual determination is tedious and error-prone. This dissertation studies the problem of automatically determining concrete worst-case bounds on the quantitative resource consumption of functional programs. Traditionally, automatic resource analyses are based on recurrence relations. The difficulty of both extracting and solving recurrence relations has led to the development of type-based resource analyses that are compositional, modular, and formally verifiable. However, existing automatic analyses based on amortization or sized types can only compute bounds that are linear in the sizes of the arguments of a function. This work presents a novel type system that derives polynomial bounds from first-order functional programs. As pioneered by Hofmann and Jost for linear bounds, it relies on the potential method of amortized analysis. Types are annotated with multivariate resource polynomials, a rich class of functions that generalize non-negative linear combinations of binomial coefficients. The main theorem states that type derivations establish resource bounds that are sound with respect to the resource-consumption of programs which is formalized by a big-step operational semantics. Simple local type rules allow for an efficient inference algorithm for the type annotations which relies on linear constraint solving only. This gives rise to an analysis system that is fully automatic if a maximal degree of the bounding polynomials is given. The analysis is generic in the resource of interest and can derive bounds on time and space usage. The bounds are naturally closed under composition and eventually summarized in closed, easily understood formulas. The practicability of this automatic amortized analysis is verified with a publicly available implementation and a reproducible experimental evaluation. The experiments with a wide range of examples from functional programming show that the inference of the bounds only takes a couple of seconds in most cases. The derived heap-space and evaluation-step bounds are compared with the measured worst-case behavior of the programs. Most bounds are asymptotically tight, and the constant factors are close or even identical to the optimal ones. For the first time we are able to automatically and precisely analyze the resource consumption of involved programs such as quick sort for lists of lists, longest common subsequence via dynamic programming, and multiplication of a list of matrices with different, fitting dimensions

    Types with potential: polynomial resource bounds via automatic amortized analysis

    Get PDF
    A primary feature of a computer program is its quantitative performance characteristics: the amount of resources such as time, memory, and power the program needs to perform its task. Concrete resource bounds for specific hardware have many important applications in software development but their manual determination is tedious and error-prone. This dissertation studies the problem of automatically determining concrete worst-case bounds on the quantitative resource consumption of functional programs. Traditionally, automatic resource analyses are based on recurrence relations. The difficulty of both extracting and solving recurrence relations has led to the development of type-based resource analyses that are compositional, modular, and formally verifiable. However, existing automatic analyses based on amortization or sized types can only compute bounds that are linear in the sizes of the arguments of a function. This work presents a novel type system that derives polynomial bounds from first-order functional programs. As pioneered by Hofmann and Jost for linear bounds, it relies on the potential method of amortized analysis. Types are annotated with multivariate resource polynomials, a rich class of functions that generalize non-negative linear combinations of binomial coefficients. The main theorem states that type derivations establish resource bounds that are sound with respect to the resource-consumption of programs which is formalized by a big-step operational semantics. Simple local type rules allow for an efficient inference algorithm for the type annotations which relies on linear constraint solving only. This gives rise to an analysis system that is fully automatic if a maximal degree of the bounding polynomials is given. The analysis is generic in the resource of interest and can derive bounds on time and space usage. The bounds are naturally closed under composition and eventually summarized in closed, easily understood formulas. The practicability of this automatic amortized analysis is verified with a publicly available implementation and a reproducible experimental evaluation. The experiments with a wide range of examples from functional programming show that the inference of the bounds only takes a couple of seconds in most cases. The derived heap-space and evaluation-step bounds are compared with the measured worst-case behavior of the programs. Most bounds are asymptotically tight, and the constant factors are close or even identical to the optimal ones. For the first time we are able to automatically and precisely analyze the resource consumption of involved programs such as quick sort for lists of lists, longest common subsequence via dynamic programming, and multiplication of a list of matrices with different, fitting dimensions
    corecore