2,520 research outputs found

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Petri nets with may/must semantics: Preserving properties through data refinements

    Get PDF
    Many systems used in process managements, like workflow systems, are developed in a top-down fashion, when the original design is refined at each step bringing it closer to the underlying reality. Underdefined specifications cannot however be used for verification, since both false positives and false negatives can be reported. In this paper we introduce colored Petri nets where guards can be evaluated to true, false and indefinite values, the last ones reflecting underspecification. This results in the semantics of Petri nets with may- and must-enableness and firings. In this framework we introduce property-preserving refinements that allow for verification in an early design phase. We present results on property preservation through refinements. We also apply our framework to workflow nets, introduce notions of may- and must-soundness and show that they are preserved through refinements. We shortly describe a prototype under implementation

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    Automatic abstraction for synthesis and verification of deterministic timed systems

    Get PDF
    Journal ArticleThis paper presents a new approach for synthesis and verification of asynchronous circuits by using abstraction. It attacks the state explosion problem by avoiding the generation of a flat state space for the whole design. Instead, it breaks the design into sub-blocks and conducts synthesis and verification on each of them. Using this approach, the speed of synthesis and verification improves dramatically. This paper introduces how abstraction is applied to times Petri-nets to speed up synthesis and verification

    An Automatic Technique for Checking the Simulation of Timed Systems

    Get PDF
    International audienceIn this paper, we suggest an automatic technique for checking the timed weak simulation between timed transition systems. The technique is an observation-based method in which two timed transition systems are composed with a timed observer. A μ-calculus property that captures the timed weak simulation is then verified on the result of the composition. An interesting feature of the suggested technique is that it only relies on an untimed μ-calculus model-checker without any specific algorithm needed to analyze the result of the composition. We also show that our simulation relation supports interesting results concerning the trace inclusion and the preservation of linear properties. Finally, the technique is validated using the FIACRE/TINA toolset

    A unified view of parameterized verification of abstract models of broadcast communication

    Get PDF
    We give a unified view of different parameterized models of concurrent and distributed systems with broadcast communication based on transition systems. Based on the resulting formal models, we discuss related verification methods and tools based on abstractions and symbolic state exploration
    corecore