5,481 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Liver segmentation using 3D CT scans.

    Get PDF
    Master of Science in Computer Science. University of KwaZulu-Natal, Durban, 2018.Abstract available in PDF file

    Machine Learning for Biomedical Application

    Get PDF
    Biomedicine is a multidisciplinary branch of medical science that consists of many scientific disciplines, e.g., biology, biotechnology, bioinformatics, and genetics; moreover, it covers various medical specialties. In recent years, this field of science has developed rapidly. This means that a large amount of data has been generated, due to (among other reasons) the processing, analysis, and recognition of a wide range of biomedical signals and images obtained through increasingly advanced medical imaging devices. The analysis of these data requires the use of advanced IT methods, which include those related to the use of artificial intelligence, and in particular machine learning. It is a summary of the Special Issue “Machine Learning for Biomedical Application”, briefly outlining selected applications of machine learning in the processing, analysis, and recognition of biomedical data, mostly regarding biosignals and medical images

    Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing

    Get PDF
    Growing evidence suggests that radiation therapy (RT) doses to the heart and cardiac substructures (CS) are strongly linked to cardiac toxicities, though only the heart is considered clinically. This work aimed to utilize the superior soft-tissue contrast of magnetic resonance (MR) to segment CS, quantify uncertainties in their position, assess their effect on treatment planning and an MR-guided environment. Automatic substructure segmentation of 12 CS was completed using a novel hybrid MR/computed tomography (CT) atlas method and was improved upon using a 3-dimensional neural network (U-Net) from deep learning. Intra-fraction motion due to respiration was then quantified. The inter-fraction setup uncertainties utilizing a novel MR-linear accelerator were also quantified. Treatment planning comparisons were performed with and without substructure inclusions and methods to reduce radiation dose to sensitive CS were evaluated. Lastly, these described technologies (deep learning U-Net) were translated to an MR-linear accelerator and a segmentation pipeline was created. Automatic segmentations from the hybrid MR/CT atlas was able to generate accurate segmentations for the chambers and great vessels (Dice similarity coefficient (DSC) \u3e 0.75) but coronary artery segmentations were unsuccessful (DSC\u3c0.3). After implementing deep learning, DSC for the chambers and great vessels was ≥0.85 along with an improvement in the coronary arteries (DSC\u3e0.5). Similar accuracy was achieved when implementing deep learning for MR-guided RT. On average, automatic segmentations required ~10 minutes to generate per patient and deep learning only required 14 seconds. The inclusion of CS in the treatment planning process did not yield statistically significant changes in plan complexity, PTV, or OAR dose. Automatic segmentation results from deep learning pose major efficiency and accuracy gains for CS segmentation offering high potential for rapid implementation into radiation therapy planning for improved cardiac sparing. Introducing CS into RT planning for MR-guided RT presented an opportunity for more effective sparing with limited increase in plan complexity

    Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing

    Get PDF
    Growing evidence suggests that radiation therapy (RT) doses to the heart and cardiac substructures (CS) are strongly linked to cardiac toxicities, though only the heart is considered clinically. This work aimed to utilize the superior soft-tissue contrast of magnetic resonance (MR) to segment CS, quantify uncertainties in their position, assess their effect on treatment planning and an MR-guided environment. Automatic substructure segmentation of 12 CS was completed using a novel hybrid MR/computed tomography (CT) atlas method and was improved upon using a 3-dimensional neural network (U-Net) from deep learning. Intra-fraction motion due to respiration was then quantified. The inter-fraction setup uncertainties utilizing a novel MR-linear accelerator were also quantified. Treatment planning comparisons were performed with and without substructure inclusions and methods to reduce radiation dose to sensitive CS were evaluated. Lastly, these described technologies (deep learning U-Net) were translated to an MR-linear accelerator and a segmentation pipeline was created. Automatic segmentations from the hybrid MR/CT atlas was able to generate accurate segmentations for the chambers and great vessels (Dice similarity coefficient (DSC) \u3e 0.75) but coronary artery segmentations were unsuccessful (DSC\u3c0.3). After implementing deep learning, DSC for the chambers and great vessels was ≥0.85 along with an improvement in the coronary arteries (DSC\u3e0.5). Similar accuracy was achieved when implementing deep learning for MR-guided RT. On average, automatic segmentations required ~10 minutes to generate per patient and deep learning only required 14 seconds. The inclusion of CS in the treatment planning process did not yield statistically significant changes in plan complexity, PTV, or OAR dose. Automatic segmentation results from deep learning pose major efficiency and accuracy gains for CS segmentation offering high potential for rapid implementation into radiation therapy planning for improved cardiac sparing. Introducing CS into RT planning for MR-guided RT presented an opportunity for more effective sparing with limited increase in plan complexity

    Role of deep learning techniques in non-invasive diagnosis of human diseases.

    Get PDF
    Machine learning, a sub-discipline in the domain of artificial intelligence, concentrates on algorithms able to learn and/or adapt their structure (e.g., parameters) based on a set of observed data. The adaptation is performed by optimizing over a cost function. Machine learning obtained a great attention in the biomedical community because it offers a promise for improving sensitivity and/or specificity of detection and diagnosis of diseases. It also can increase objectivity of the decision making, decrease the time and effort on health care professionals during the process of disease detection and diagnosis. The potential impact of machine learning is greater than ever due to the increase in medical data being acquired, the presence of novel modalities being developed and the complexity of medical data. In all of these scenarios, machine learning can come up with new tools for interpreting the complex datasets that confront clinicians. Much of the excitement for the application of machine learning to biomedical research comes from the development of deep learning which is modeled after computation in the brain. Deep learning can help in attaining insights that would be impossible to obtain through manual analysis. Deep learning algorithms and in particular convolutional neural networks are different from traditional machine learning approaches. Deep learning algorithms are known by their ability to learn complex representations to enhance pattern recognition from raw data. On the other hand, traditional machine learning requires human engineering and domain expertise to design feature extractors and structure data. With increasing demands upon current radiologists, there are growing needs for automating the diagnosis. This is a concern that deep learning is able to address. In this dissertation, we present four different successful applications of deep learning for diseases diagnosis. All the work presented in the dissertation utilizes medical images. In the first application, we introduce a deep-learning based computer-aided diagnostic system for the early detection of acute renal transplant rejection. The system is based on the fusion of both imaging markers (apparent diffusion coefficients derived from diffusion-weighted magnetic resonance imaging) and clinical biomarkers (creatinine clearance and serum plasma creatinine). The fused data is then used as an input to train and test a convolutional neural network based classifier. The proposed system is tested on scans collected from 56 subjects from geographically diverse populations and different scanner types/image collection protocols. The overall accuracy of the proposed system is 92.9% with 93.3% sensitivity and 92.3% specificity in distinguishing non-rejected kidney transplants from rejected ones. In the second application, we propose a novel deep learning approach for the automated segmentation and quantification of the LV from cardiac cine MR images. We aimed at achieving lower errors for the estimated heart parameters compared to the previous studies by proposing a novel deep learning segmentation method. Using fully convolutional neural networks, we proposed novel methods for the extraction of a region of interest that contains the left ventricle, and the segmentation of the left ventricle. Following myocardial segmentation, functional and mass parameters of the left ventricle are estimated. Automated Cardiac Diagnosis Challenge dataset was used to validate our framework, which gave better segmentation, accurate estimation of cardiac parameters, and produced less error compared to other methods applied on the same dataset. Furthermore, we showed that our segmentation approach generalizes well across different datasets by testing its performance on a locally acquired dataset. In the third application, we propose a novel deep learning approach for automated quantification of strain from cardiac cine MR images of mice. For strain analysis, we developed a Laplace-based approach to track the LV wall points by solving the Laplace equation between the LV contours of each two successive image frames over the cardiac cycle. Following tracking, the strain estimation is performed using the Lagrangian-based approach. This new automated system for strain analysis was validated by comparing the outcome of these analysis with the tagged MR images from the same mice. There were no significant differences between the strain data obtained from our algorithm using cine compared to tagged MR imaging. In the fourth application, we demonstrate how a deep learning approach can be utilized for the automated classification of kidney histopathological images. Our approach can classify four classes: the fat, the parenchyma, the clear cell renal cell carcinoma, and the unusual cancer which has been discovered recently, called clear cell papillary renal cell carcinoma. Our framework consists of three convolutional neural networks and the whole-slide kidney images were divided into patches with three different sizes to be inputted to the networks. Our approach can provide patch-wise and pixel-wise classification. Our approach classified the four classes accurately and surpassed other state-of-the-art methods such as ResNet (pixel accuracy: 0.89 Resnet18, 0.93 proposed). In conclusion, the results of our proposed systems demonstrate the potential of deep learning for the efficient, reproducible, fast, and affordable disease diagnosis
    • …
    corecore