2,612 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    An Efficient Index for Visual Search in Appearance-based SLAM

    Full text link
    Vector-quantization can be a computationally expensive step in visual bag-of-words (BoW) search when the vocabulary is large. A BoW-based appearance SLAM needs to tackle this problem for an efficient real-time operation. We propose an effective method to speed up the vector-quantization process in BoW-based visual SLAM. We employ a graph-based nearest neighbor search (GNNS) algorithm to this aim, and experimentally show that it can outperform the state-of-the-art. The graph-based search structure used in GNNS can efficiently be integrated into the BoW model and the SLAM framework. The graph-based index, which is a k-NN graph, is built over the vocabulary words and can be extracted from the BoW's vocabulary construction procedure, by adding one iteration to the k-means clustering, which adds small extra cost. Moreover, exploiting the fact that images acquired for appearance-based SLAM are sequential, GNNS search can be initiated judiciously which helps increase the speedup of the quantization process considerably

    Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words

    No full text
    Published versio

    High-Precision Localization Using Ground Texture

    Full text link
    Location-aware applications play an increasingly critical role in everyday life. However, satellite-based localization (e.g., GPS) has limited accuracy and can be unusable in dense urban areas and indoors. We introduce an image-based global localization system that is accurate to a few millimeters and performs reliable localization both indoors and outside. The key idea is to capture and index distinctive local keypoints in ground textures. This is based on the observation that ground textures including wood, carpet, tile, concrete, and asphalt may look random and homogeneous, but all contain cracks, scratches, or unique arrangements of fibers. These imperfections are persistent, and can serve as local features. Our system incorporates a downward-facing camera to capture the fine texture of the ground, together with an image processing pipeline that locates the captured texture patch in a compact database constructed offline. We demonstrate the capability of our system to robustly, accurately, and quickly locate test images on various types of outdoor and indoor ground surfaces

    The Revisiting Problem in Simultaneous Localization and Mapping: A Survey on Visual Loop Closure Detection

    Full text link
    Where am I? This is one of the most critical questions that any intelligent system should answer to decide whether it navigates to a previously visited area. This problem has long been acknowledged for its challenging nature in simultaneous localization and mapping (SLAM), wherein the robot needs to correctly associate the incoming sensory data to the database allowing consistent map generation. The significant advances in computer vision achieved over the last 20 years, the increased computational power, and the growing demand for long-term exploration contributed to efficiently performing such a complex task with inexpensive perception sensors. In this article, visual loop closure detection, which formulates a solution based solely on appearance input data, is surveyed. We start by briefly introducing place recognition and SLAM concepts in robotics. Then, we describe a loop closure detection system's structure, covering an extensive collection of topics, including the feature extraction, the environment representation, the decision-making step, and the evaluation process. We conclude by discussing open and new research challenges, particularly concerning the robustness in dynamic environments, the computational complexity, and scalability in long-term operations. The article aims to serve as a tutorial and a position paper for newcomers to visual loop closure detection.Comment: 25 pages, 15 figure

    Grounding robot motion in natural language and visual perception

    Get PDF
    The current state of the art in military and first responder ground robots involves heavy physical and cognitive burdens on the human operator while taking little to no advantage of the potential autonomy of robotic technology. The robots currently in use are rugged remote-controlled vehicles. Their interaction modalities, usually utilizing a game controller connected to a computer, require a dedicated operator who has limited capacity for other tasks. I present research which aims to ease these burdens by incorporating multiple modes of robotic sensing into a system which allows humans to interact with robots through a natural-language interface. I conduct this research on a custom-built six-wheeled mobile robot. First I present a unified framework which supports grounding natural-language semantics in robotic driving. This framework supports learning the meanings of nouns and prepositions from sentential descriptions of paths driven by the robot, as well as using such meanings to both generate a sentential description of a path and perform automated driving of a path specified in natural language. One limitation of this framework is that it requires as input the locations of the (initially nameless) objects in the floor plan. Next I present a method to automatically detect, localize, and label objects in the robot’s environment using only the robot’s video feed and corresponding odometry. This method produces a map of the robot’s environment in which objects are differentiated by abstract class labels. Finally, I present work that unifies the previous two approaches. This method detects, localizes, and labels objects, as the previous method does. However, this new method integrates natural-language descriptions to learn actual object names, rather than abstract labels
    • …
    corecore