25 research outputs found

    Formally-Based Design Evaluation (extended version)

    Get PDF
    This paper investigates specification, verification and test generation for synchronous and asynchronous circuits. The approach is called DILL (Digital Logic in LOTOS). DILL models are discussed for synchronous and asynchronous circuits. Relations for (strong) conformance are defined for verifying a design specification against a high-level specification. An algorithm is also outlined for generating and applying implementation tests based on a specification. Tools have been developed for automated test generation and verification of conformance between an implementation and its specification. The approach is illustrated with various benchmark circuits as case studies

    Verifying and Testing Asynchronous Circuits using LOTOS (extended version)

    Get PDF
    It is shown howDILL (Digital Logic in LOTOS) can be used to specify,verify and test asynchronous hardware designs. Asynchronous (unclocked) circuits are a topic of active research in the hardware community. It is illustrated how DILL can address some of the key challenges. New relations for (strong) conformance are defined for assessing a circuit implementation against its specification. An algorithm is also presented for generating and applying implementation tests based on a specification. Tools have been developed for automated verification of conformance and generation of tests. The approach is illustrated with three case studies that explore speed independence, delay sensitivity and testing of sample asynchronous circuit designs

    Formal approach to hardware analysis

    Get PDF

    Synthesis of hardware systems from very high level behavioural specifications

    Get PDF

    Formally-Based Design Evaluation

    Full text link

    A Formal, Hierarchical Design and Validation Methodology for VLSI

    Get PDF
    The high cost of fabricating VLSI circuits requires that they be validated, that is, shown to function correctly, before manufacture. The cost of design errors can be kept to a minimum if such validation occurs as early as possible; this is achieved by integrating validation into a hierarchical design procedure. In this thesis, a hierarchical approach to design, in which validation is performed between each pair of adjacent levels in the hierarchy, is developed. In order to adopt such an approach, a language is required for the formal description of hardware behaviour and structure. Therefore an important aspect of the development of the methodology, and a major theme of the thesis, is the development of languages to support the methodology. An enhanced version of CIRCAL, which enables large and abstract devices to be described concisely and supports formal reasoning about the behaviour of constructed systems, is presented. Specifications should accurately model the behaviour of real hardware and should be useful for design and validation; they should also be easy to write. In order to realise these goals, a number of specification techniques have been developed and a new language which enforces some of these techniques, thereby easing the specification task, is proposed. Ways in which a language may assist design have been investigated. Language constructs which restrict a designer, thereby removing some design decisions, have been developed. A simple correctness-preserving transformation is presented, illustrating another way in which a designer may be assisted by a formal language. Specification techniques play an important part in the validation task, as accurate and consistent modelling is vital in establishing the correctness of implementations. Techniques have also been developed which enable detailed implementations to be usefully compared with more abstract specifications. This is demonstrated in a large example, the specification, design and formal verification of a simple microprocessor. Finally, the concept of contextual constraints, restrictions on the environment in which a device may be placed, is introduced. A method of specifying such constraints has been developed, and it is shown that their formal treatment can provide assistance in specification, design and verification

    Specification-driven design of custom hardware in HOP

    Get PDF
    technical reportWe present a language "Hardware viewed as Objects and Processes" (HOP) for specifying the structure, behavior, and timing of hardware systems. HOP embodies a simple process model for lock-step synchronous processes. Processes may be described both as a black-box and as a collection of interacting sub-processes. The latter can be statically simplified using an algorithm 'PARCOMP'. PARCOMP symbolically simulates a collection of interacting processes. The advantages claimed for HOP include simple semantics, intuitiveness, high expressive power, and numerous provisions to support easily verifiable designs all the way to VLSI layout. After introducing HOP, and presenting some of the results obtained from experimenting with the HOP design system, we present the design of a large hardware system (the "Utah Simulation Engine") currently being developed to speed-up distributed discrete event simulation using Time Warp. Issues in the specification driven design of this system are discussed and illustrated using HOP

    Modeling an Asynchronous Circuit Dedicated to the Protection Against Physical Attacks

    Get PDF
    Asynchronous circuits have several advantages for security applications, in particular their good resistance to attacks. In this paper, we report on experiments with modeling, at various abstraction levels, a patented asynchronous circuit for detecting physical attacks, such as cutting wires or producing short-circuits.Comment: In Proceedings MARS 2020, arXiv:2004.1240

    Idiomatic integrated circuit design

    Get PDF

    Generating Programming Environments with Integrated Text and Graphics for VLSI Design Systems

    Get PDF
    The constant improvements in device integration, the development of new technologies and the emergence of new design techniques call for flexible, maintainable and robust software tools. The generic nature of compiler-compiler systems, with their semi-formal specifications, can help in the construction of those tools. This thesis describes the Wright editor generator which is used in the synthesis of language-based graphical editors (LBGEs). An LBGE is a programming environment where the programs being manipulated denote pictures. Editing actions can be specified through both textual and graphical interfaces. Editors generated by the Wright system are specified using the formalism of attribute grammars. The major example editor in this thesis, Stick-Wright, is a design entry system for the construction of VLSI circuits. Stick-Wright is a hierarchical symbolic layout editor which exploits a combination of text and graphics in an interactive environment to provide the circuit designer with a tool for experimenting with circuit topologies. A simpler system, Pict-Wright: a picture drawing system, is also used to illustrate the attribute grammar specification process. This thesis aims to demonstrate the efficacy of formal specification in the generation of software-tools. The generated system Stick-Wright shows that a text/graphic programming environment can form the basis of a powerful VLSI design tool, especially with regard to providing the designer with immediate graphical feedback. Further applications of the LBGE generator approach to system design are given for a range of VLSI design activities
    corecore