1,163 research outputs found

    A model for the analysis of security policies in service function chains

    Full text link
    Two emerging architectural paradigms, i.e., Software Defined Networking (SDN) and Network Function Virtualization (NFV), enable the deployment and management of Service Function Chains (SFCs). A SFC is an ordered sequence of abstract Service Functions (SFs), e.g., firewalls, VPN-gateways,traffic monitors, that packets have to traverse in the route from source to destination. While this appealing solution offers significant advantages in terms of flexibility, it also introduces new challenges such as the correct configuration and ordering of SFs in the chain to satisfy overall security requirements. This paper presents a formal model conceived to enable the verification of correct policy enforcements in SFCs. Software tools based on the model can then be designed to cope with unwanted network behaviors (e.g., security flaws) deriving from incorrect interactions of SFs in the same SFC

    Rule-Based Synthesis of Chains of Security Functions for Software-Defined Networks

    Get PDF
    Software-defined networks (SDN) offer a high degree of programmability for handling and forwarding packets. In particular, they allow network administrators to combine different security functions, such as firewalls, intrusion detection systems, and external services, into security chains designed to prevent or mitigate attacks against end user applications.These chains can benefit from formal techniques for their automated construction and verification. We propose in this paper a rule-based system for automating the composition and configuration of such chains for Android applications. Given the network characterization of an application and the set of permissions it requires, our rules construct an abstract representation of a custom security chain. This representation is then translated into a concrete implementation of the chain in pyretic, a domain-specific language for programming SDN controllers. We prove that the chains produced by our rules satisfy a number of correctness properties such as the absence of black holes or loops, and shadowing freedom, and that they are coherent with the underlying security policy

    Management of stateful firewall misconfiguration

    Full text link

    Formal Firewall Conformance Testing: An Application of Test and Proof Techniques

    Get PDF
    Firewalls are an important means to secure critical ICT infrastructures. As configurable off-the-shelf prod\-ucts, the effectiveness of a firewall crucially depends on both the correctness of the implementation itself as well as the correct configuration. While testing the implementation can be done once by the manufacturer, the configuration needs to be tested for each application individually. This is particularly challenging as the configuration, implementing a firewall policy, is inherently complex, hard to understand, administrated by different stakeholders and thus difficult to validate. This paper presents a formal model of both stateless and stateful firewalls (packet filters), including NAT, to which a specification-based conformance test case gen\-eration approach is applied. Furthermore, a verified optimisation technique for this approach is presented: starting from a formal model for stateless firewalls, a collection of semantics-preserving policy transformation rules and an algorithm that optimizes the specification with respect of the number of test cases required for path coverage of the model are derived. We extend an existing approach that integrates verification and testing, that is, tests and proofs to support conformance testing of network policies. The presented approach is supported by a test framework that allows to test actual firewalls using the test cases generated on the basis of the formal model. Finally, a report on several larger case studies is presented
    corecore