4,034 research outputs found

    Verifying privacy by little interaction and no process equivalence

    Get PDF
    While machine-assisted verification of classical security goals such as confidentiality and authentication is well-established, it is less mature for recent ones. Electronic voting protocols claim properties such as voter privacy. The most common modelling involves indistinguishability, and is specified via trace equivalence in cryptographic extensions of process calculi. However, it has shown restrictions. We describe a novel model, based on unlinkability between two pieces of information. Specifying it as an extension to the Inductive Method allows us to establish voter privacy without the need for approximation or session bounding. The two models and their latest specifications are contrasted

    Formal security analysis of registration protocols for interactive systems: a methodology and a case of study

    Full text link
    In this work we present and formally analyze CHAT-SRP (CHAos based Tickets-Secure Registration Protocol), a protocol to provide interactive and collaborative platforms with a cryptographically robust solution to classical security issues. Namely, we focus on the secrecy and authenticity properties while keeping a high usability. In this sense, users are forced to blindly trust the system administrators and developers. Moreover, as far as we know, the use of formal methodologies for the verification of security properties of communication protocols isn't yet a common practice. We propose here a methodology to fill this gap, i.e., to analyse both the security of the proposed protocol and the pertinence of the underlying premises. In this concern, we propose the definition and formal evaluation of a protocol for the distribution of digital identities. Once distributed, these identities can be used to verify integrity and source of information. We base our security analysis on tools for automatic verification of security protocols widely accepted by the scientific community, and on the principles they are based upon. In addition, it is assumed perfect cryptographic primitives in order to focus the analysis on the exchange of protocol messages. The main property of our protocol is the incorporation of tickets, created using digests of chaos based nonces (numbers used only once) and users' personal data. Combined with a multichannel authentication scheme with some previous knowledge, these tickets provide security during the whole protocol by univocally linking each registering user with a single request. [..]Comment: 32 pages, 7 figures, 8 listings, 1 tabl

    Deciding equivalence-based properties using constraint solving

    Get PDF
    Formal methods have proved their usefulness for analyzing the security of protocols. Most existing results focus on trace properties like secrecy or authentication. There are however several security properties, which cannot be defined (or cannot be naturally defined) as trace properties and require a notion of behavioural equivalence. Typical examples are anonymity, privacy related properties or statements closer to security properties used in cryptography. In this paper, we consider three notions of equivalence defined in the applied pi calculus: observational equivalence, may-testing equivalence, and trace equivalence. First, we study the relationship between these three notions. We show that for determinate processes, observational equivalence actually coincides with trace equivalence, a notion simpler to reason with. We exhibit a large class of determinate processes, called simple processes, that capture most existing protocols and cryptographic primitives. While trace equivalence and may-testing equivalence seem very similar, we show that may-testing equivalence is actually strictly stronger than trace equivalence. We prove that the two notions coincide for image-finite processes, such as processes without replication. Second, we reduce the decidability of trace equivalence (for finite processes) to deciding symbolic equivalence between sets of constraint systems. For simple processes without replication and with trivial else branches, it turns out that it is actually sufficient to decide symbolic equivalence between pairs of positive constraint systems. Thanks to this reduction and relying on a result first proved by M. Baudet, this yields the first decidability result of observational equivalence for a general class of equational theories (for processes without else branch nor replication). Moreover, based on another decidability result for deciding equivalence between sets of constraint systems, we get decidability of trace equivalence for processes with else branch for standard primitives

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Lengths May Break Privacy – Or How to Check for Equivalences with Length

    Get PDF
    Security protocols have been successfully analyzed using symbolic models, where messages are represented by terms and protocols by processes. Privacy properties like anonymity or untraceability are typically expressed as equivalence between processes. While some decision procedures have been proposed for automatically deciding process equivalence, all existing approaches abstract away the information an attacker may get when observing the length of messages. In this paper, we study process equivalence with length tests. We first show that, in the static case, almost all existing decidability results (for static equivalence) can be extended to cope with length tests. In the active case, we prove decidability of trace equivalence with length tests, for a bounded number of sessions and for standard primitives. Our result relies on a previous decidability result from Cheval et al (without length tests). Our procedure has been implemented and we have discovered a new flaw against privacy in the biometric passport protocol

    APTE: An Algorithm for Proving Trace Equivalence

    Get PDF
    This paper presents APTE, a new tool for automatically proving the security of cryptographic protocols. It focuses on proving trace equivalence between processes, which is crucial for specifying privacy type properties such as anonymity and unlinkability. The tool can handle protocols expressed in a calculus similar to the applied-pi calculus, which allows us to capture most existing protocols that rely on classical cryptographic primitives. In particular, APTE handles private channels and else branches in protocols with bounded number of sessions. Unlike most equivalence verifier tools, APTE is guaranteed to terminate Moreover, APTE is the only tool that extends the usual notion of trace equivalence by considering ``side-channel'' information leaked to the attacker such as the length of messages and the execution times. We illustrate APTE on different case studies which allowed us to automatically (re)-discover attacks on protocols such as the Private Authentication protocol or the protocols of the electronic passports

    How to Work with Honest but Curious Judges? (Preliminary Report)

    Get PDF
    The three-judges protocol, recently advocated by Mclver and Morgan as an example of stepwise refinement of security protocols, studies how to securely compute the majority function to reach a final verdict without revealing each individual judge's decision. We extend their protocol in two different ways for an arbitrary number of 2n+1 judges. The first generalisation is inherently centralised, in the sense that it requires a judge as a leader who collects information from others, computes the majority function, and announces the final result. A different approach can be obtained by slightly modifying the well-known dining cryptographers protocol, however it reveals the number of votes rather than the final verdict. We define a notion of conditional anonymity in order to analyse these two solutions. Both of them have been checked in the model checker MCMAS

    Private Multi-party Matrix Multiplication and Trust Computations

    Full text link
    This paper deals with distributed matrix multiplication. Each player owns only one row of both matrices and wishes to learn about one distinct row of the product matrix, without revealing its input to the other players. We first improve on a weighted average protocol, in order to securely compute a dot-product with a quadratic volume of communications and linear number of rounds. We also propose a protocol with five communication rounds, using a Paillier-like underlying homomorphic public key cryptosystem, which is secure in the semi-honest model or secure with high probability in the malicious adversary model. Using ProVerif, a cryptographic protocol verification tool, we are able to check the security of the protocol and provide a countermeasure for each attack found by the tool. We also give a randomization method to avoid collusion attacks. As an application, we show that this protocol enables a distributed and secure evaluation of trust relationships in a network, for a large class of trust evaluation schemes.Comment: Pierangela Samarati. SECRYPT 2016 : 13th International Conference on Security and Cryptography, Lisbonne, Portugal, 26--28 Juillet 2016. 201
    corecore