170 research outputs found

    Multilingual CheckList: Generation and Evaluation

    Full text link
    The recently proposed CheckList (Riberio et al,. 2020) approach to evaluation of NLP systems has revealed high failure rates for basic capabilities for multiple state-of-the-art and commercial models. However, the CheckList creation process is manual which creates a bottleneck towards creation of multilingual CheckLists catering 100s of languages. In this work, we explore multiple approaches to generate and evaluate the quality of Multilingual CheckList. We device an algorithm -- Automated Multilingual Checklist Generation (AMCG) for automatically transferring a CheckList from a source to a target language that relies on a reasonable machine translation system. We then compare the CheckList generated by AMCG with CheckLists generated with different levels of human intervention. Through in-depth crosslingual experiments between English and Hindi, and broad multilingual experiments spanning 11 languages, we show that the automatic approach can provide accurate estimates of failure rates of a model across capabilities, as would a human-verified CheckList, and better than CheckLists generated by humans from scratch

    LOW RESOURCE HIGH ACCURACY KEYWORD SPOTTING

    Get PDF
    Keyword spotting (KWS) is a task to automatically detect keywords of interest in continuous speech, which has been an active research topic for over 40 years. Recently there is a rising demand for KWS techniques in resource constrained conditions. For example, as for the year of 2016, USC Shoah Foundation covers audio-visual testimonies from survivors and other witnesses of the Holocaust in 63 countries and 39 languages, and providing search capability for those testimonies requires substantial KWS technologies in low language resource conditions, as for most languages, resources for developing KWS systems are not as rich as that for English. Despite the fact that KWS has been in the literature for a long time, KWS techniques in resource constrained conditions have not been researched extensively. In this dissertation, we improve KWS performance in two low resource conditions: low language resource condition where language specific data is inadequate, and low computation resource condition where KWS runs on computation constrained devices. For low language resource KWS, we focus on applications for speech data mining, where large vocabulary continuous speech recognition (LVCSR)-based KWS techniques are widely used. Keyword spotting for those applications are also known as keyword search (KWS) or spoken term detection (STD). A key issue for this type of KWS technique is the out-of-vocabulary (OOV) keyword problem. LVCSR-based KWS can only search for words that are defined in the LVCSR's lexicon, which is typically very small in a low language resource condition. To alleviate the OOV keyword problem, we propose a technique named "proxy keyword search" that enables us to search for OOV keywords with regular LVCSR-based KWS systems. We also develop a technique that expands LVCSR's lexicon automatically by adding hallucinated words, which increases keyword coverage and therefore improves KWS performance. Finally we explore the possibility of building LVCSR-based KWS systems with limited lexicon, or even without an expert pronunciation lexicon. For low computation resource KWS, we focus on wake-word applications, which usually run on computation constrained devices such as mobile phones or tablets. We first develop a deep neural network (DNN)-based keyword spotter, which is lightweight and accurate enough that we are able to run it on devices continuously. This keyword spotter typically requires a pre-defined keyword, such as "Okay Google". We then propose a long short-term memory (LSTM)-based feature extractor for query-by-example KWS, which enables the users to define their own keywords

    Automatic Pronunciation Assessment -- A Review

    Full text link
    Pronunciation assessment and its application in computer-aided pronunciation training (CAPT) have seen impressive progress in recent years. With the rapid growth in language processing and deep learning over the past few years, there is a need for an updated review. In this paper, we review methods employed in pronunciation assessment for both phonemic and prosodic. We categorize the main challenges observed in prominent research trends, and highlight existing limitations, and available resources. This is followed by a discussion of the remaining challenges and possible directions for future work.Comment: 9 pages, accepted to EMNLP Finding

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen
    corecore