85 research outputs found

    Foreword and editorial - July issue

    Full text link

    Pilot sequence based IQ imbalance estimation and compensation

    Get PDF
    Abstract. As modern radio access technologies strive to achieve progressively higher data rates and to become increasingly more reliable, minimizing the effects of hardware imperfections becomes a priority. One of those imperfections is in-phase quadrature imbalance (IQI), caused by amplitude and phase response differences between the I and Q branches of the IQ demodulation process. IQI has been shown to deteriorate bit error rates, possibly compromise positioning performance, amongst other effects. Minimizing IQI by tightening hardware manufacturing constraints is not always a commercially viable approach, thus, baseband processing for IQI compensation provides an alternative. The thesis begins by presenting a study in IQI modeling for direct conversion receivers, we then derive a model for general imbalances and show that it reproduces the two most common models in the bibliography. We proceed by exploring some of the existing IQI compensation techniques and discussing their underlying assumptions, advantages, and possible relevant issues. A novel pilot-sequence based approach for tackling IQI estimation and compensation is introduced in this thesis. The idea is to minimize the square Frobenius norm of the error between candidate covariance matrices, which are functions of the candidate IQI parameters, and the sample covariance matrices, obtained from measurements. This new method is first presented in a positioning context with flat fading channels, where IQI compensation is used to improve the positioning estimates mean square error. The technique is then adapted to orthogonal frequency division multiplexing (OFDM) systems,including an version that exploits the 5G New Radio reference signals to estimate the IQI coefficients. We further generalize the new approach to solve joint transmitter and receiver IQI estimation and discuss the implementation details and suggested optimization techniques. The introduced methods are evaluated numerically in their corresponding chapters under a set of different conditions, such as varying signal-to-noise ratio, pilot sequence length, channel model, number of subcarriers, etc. Finally, the proposed compensation approach is compared to other well-established methods by evaluating the bit error rate curves of 5G transmissions. We consistently show that the proposed method is capable of outperforming these other methods if the SNR and pilot sequence length values are sufficiently high. In the positioning simulations, the proposed IQI compensation method was able to improve the root mean squared error (RMSE) of the position estimates by approximately 25 cm. In the OFDM scenario, with high SNR and a long pilot sequence, the new method produced estimates with mean squared error (MSE) about a million times smaller than those from a blind estimator. In bit error rate (BER) simulations, the new method was the only compensation technique capable of producing BER curves similar to the curves without IQI in all of the studied scenarios

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    New challenges in wireless and free space optical communications

    Get PDF
    AbstractThis manuscript presents a survey on new challenges in wireless communication systems and discusses recent approaches to address some recently raised problems by the wireless community. At first a historical background is briefly introduced. Challenges based on modern and real life applications are then described. Up to date research fields to solve limitations of existing systems and emerging new technologies are discussed. Theoretical and experimental results based on several research projects or studies are briefly provided. Essential, basic and many self references are cited. Future researcher axes are briefly introduced

    Radio Frequency Interference Impact Assessment on Global Navigation Satellite Systems

    Get PDF
    The Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to perform a study on the Radio Frequency (RF) threat against telecommunications and ICT control systems. This study is divided into two parts. The rst part concerns the assessment of high energy radio frequency (HERF) threats, where the focus is on the generation of electromagnetic pulses (EMP), the development of corresponding devices and the possible impact on ICT and power distribution systems. The second part of the study concerns radio frequency interference (RFI) with regard to global navigation satellite systems (GNSS). This document contributes to the second part and contains a detailed literature study disclosing the weaknesses of GNSS systems. Whereas the HERF analysis only concerns intentional interference issues, this study on GNSS also takes into account unintentional interference, enlarging the spectrum of plausible interference scenarios.JRC.DG.G.6-Security technology assessmen

    Localization and Tracking in Wireless MIMO Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Development of passive bistatic radars based on orthogonal frequency-division multiplexing modulated signals for short and medium range surveillance

    Get PDF
    The main activity conducted during the research activity is the development of PBR systems based on OFDM signals of opportunity. In particular, a DAB based PBR for air traffic control (ATC) applications and a DVB-T based PBR for maritime surveillance have been objects of study

    Multidimensional Frequency Estimation with Applications in Automotive Radar

    Get PDF
    This thesis considers multidimensional frequency estimation with a focus on computational efficiency and high-resolution capability. A novel framework on multidimensional high-resolution frequency estimation is developed and applied to increase the range, radial velocity, and angular resolution capcability of state-of-the-art automotive radars

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations
    corecore