226 research outputs found

    JAPANESE COINS AND BANKNOTES RECOGNITION FOR VISUALLY IMPAIRED PEOPLE

    Get PDF
    Recent deep learning techniques are successfully integrated into devices to assist visually impaired people in their daily lives, particularly detecting coins/banknotes. Previous works have focused on well captured devices and examined high-quality images. In this work, we design a framework to recognize Japanese Coin/Banknote (JCB) for low-quality images under various criteria. Discriminate features usually disappear in low-quality images. Consequently, using the depth image in addition to RGB image in processing can be enhanced the accuracy of our system. In this work, we first leverage depth information by using a Monocular Depth Prediction network. Additionally, a pre-trained Deep Convolutional Neural Network process RGB and Depth images, respectively. At last, we combine two networks by an ensemble method to produce more accurate detections. By processing depth images in addition to RGB images, the detection results are thus accurate. As a result, our work achieves 74.1% mean Average Precision (mAP)

    In Silico profiling of deleterious amino acid substitutions of potential pathological importance in haemophlia A and haemophlia B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, instead of current biochemical methods, the effects of deleterious amino acid substitutions in <it>F8 and F9 </it>gene upon protein structure and function were assayed by means of computational methods and information from the databases. Deleterious substitutions of <it>F8 and F9 </it>are responsible for Haemophilia A and Haemophilia B which is the most common genetic disease of coagulation disorders in blood. Yet, distinguishing deleterious variants of <it>F8 and F9 </it>from the massive amount of nonfunctional variants that occur within a single genome is a significant challenge.</p> <p>Methods</p> <p>We performed an <it>in silico </it>analysis of deleterious mutations and their protein structure changes in order to analyze the correlation between mutation and disease. Deleterious nsSNPs were categorized based on empirical based and support vector machine based methods to predict the impact on protein functions. Furthermore, we modeled mutant proteins and compared them with the native protein for analysis of protein structure stability.</p> <p>Results</p> <p>Out of 510 nsSNPs in <it>F8</it>, 378 nsSNPs (74%) were predicted to be 'intolerant' by SIFT, 371 nsSNPs (73%) were predicted to be 'damaging' by PolyPhen and 445 nsSNPs (87%) as 'less stable' by I-Mutant2.0. In <it>F9</it>, 129 nsSNPs (78%) were predicted to be intolerant by SIFT, 131 nsSNPs (79%) were predicted to be damaging by PolyPhen and 150 nsSNPs (90%) as less stable by I-Mutant2.0. Overall, we found that I-Mutant which emphasizes support vector machine based method outperformed SIFT and PolyPhen in prediction of deleterious nsSNPs in both <it>F8 </it>and <it>F9</it>.</p> <p>Conclusions</p> <p>The models built in this work would be appropriate for predicting the deleterious amino acid substitutions and their functions in gene regulation which would be useful for further genotype-phenotype researches as well as the pharmacogenetics studies. These <it>in silico </it>tools, despite being helpful in providing information about the nature of mutations, may also function as a first-pass filter to determine the substitutions worth pursuing for further experimental research in other coagulation disorder causing genes.</p

    Banknote Authentication and Medical Image Diagnosis Using Feature Descriptors and Deep Learning Methods

    Get PDF
    Banknote recognition and medical image analysis have been the foci of image processing and pattern recognition research. As counterfeiters have taken advantage of the innovation in print media technologies for reproducing fake monies, hence the need to design systems which can reassure and protect citizens of the authenticity of banknotes in circulation. Similarly, many physicians must interpret medical images. But image analysis by humans is susceptible to error due to wide variations across interpreters, lethargy, and human subjectivity. Computer-aided diagnosis is vital to improvements in medical analysis, as they facilitate the identification of findings that need treatment and assist the expert’s workflow. Thus, this thesis is organized around three such problems related to Banknote Authentication and Medical Image Diagnosis. In our first research problem, we proposed a new banknote recognition approach that classifies the principal components of extracted HOG features. We further experimented on computing HOG descriptors from cells created from image patch vertices of SURF points and designed a feature reduction approach based on a high correlation and low variance filter. In our second research problem, we developed a mobile app for banknote identification and counterfeit detection using the Unity 3D software and evaluated its performance based on a Cascaded Ensemble approach. The algorithm was then extended to a client-server architecture using SIFT and SURF features reduced by Bag of Words and high correlation-based HOG vectors. In our third research problem, experiments were conducted on a pre-trained mobile app for medical image diagnosis using three convolutional layers with an Ensemble Classifier comprising PCA and bagging of five base learners. Also, we implemented a Bidirectional Generative Adversarial Network to mitigate the effect of the Binary Cross Entropy loss based on a Deep Convolutional Generative Adversarial Network as the generator and encoder with Capsule Network as the discriminator while experimenting on images with random composition and translation inferences. Lastly, we proposed a variant of the Single Image Super-resolution for medical analysis by redesigning the Super Resolution Generative Adversarial Network to increase the Peak Signal to Noise Ratio during image reconstruction by incorporating a loss function based on the mean square error of pixel space and Super Resolution Convolutional Neural Network layers

    Albuquerque Morning Journal, 01-11-1907

    Get PDF
    https://digitalrepository.unm.edu/abq_mj_news/3990/thumbnail.jp

    Network-based identification of driver pathways in clonal systems

    Get PDF
    Highly ethanol-tolerant bacteria for the production of biofuels, bacterial pathogenes which are resistant to antibiotics and cancer cells are examples of phenotypes that are of importance to society and are currently being studied. In order to better understand these phenotypes and their underlying genotype-phenotype relationships it is now commonplace to investigate DNA and expression profiles using next generation sequencing (NGS) and microarray techniques. These techniques generate large amounts of omics data which result in lists of genes that have mutations or expression profiles which potentially contribute to the phenotype. These lists often include a multitude of genes and are troublesome to verify manually as performing literature studies and wet-lab experiments for a large number of genes is very time and resources consuming. Therefore, (computational) methods are required which can narrow these gene lists down by removing generally abundant false positives from these lists and can ideally provide additional information on the relationships between the selected genes. Other high-throughput techniques such as yeast two-hybrid (Y2H), ChIP-Seq and Chip-Chip but also a myriad of small-scale experiments and predictive computational methods have generated a treasure of interactomics data over the last decade, most of which is now publicly available. By combining this data into a biological interaction network, which contains all molecular pathways that an organisms can utilize and thus is the equivalent of the blueprint of an organisms, it is possible to integrate the omics data obtained from experiments with these biological interaction networks. Biological interaction networks are key to the computational methods presented in this thesis as they enables methods to account for important relations between genes (and gene products). Doing so it is possible to not only identify interesting genes but also to uncover molecular processes important to the phenotype. As the best way to analyze omics data from an interesting phenotype varies widely based on the experimental setup and the available data, multiple methods were developed and applied in the context of this thesis: In a first approach, an existing method (PheNetic) was applied to a consortium of three bacterial species that together are able to efficiently degrade a herbicide but none of the species are able to efficiently degrade the herbicide on their own. For each of the species expression data (RNA-seq) was generated for the consortium and the species in isolation. PheNetic identified molecular pathways which were differentially expressed and likely contribute to a cross-feeding mechanism between the species in the consortium. Having obtained proof-of-concept, PheNetic was adapted to cope with experimental evolution datasets in which, in addition to expression data, genomics data was also available. Two publicly available datasets were analyzed: Amikacin resistance in E. coli and coexisting ecotypes in E.coli. The results allowed to elicit well-known and newly found molecular pathways involved in these phenotypes. Experimental evolution sometimes generates datasets consisting of mutator phenotypes which have high mutation rates. These datasets are hard to analyze due to the large amount of noise (most mutations have no effect on the phenotype). To this end IAMBEE was developed. IAMBEE is able to analyze genomic datasets from evolution experiments even if they contain mutator phenotypes. IAMBEE was tested using an E. coli evolution experiment in which cells were exposed to increasing concentrations of ethanol. The results were validated in the wet-lab. In addition to methods for analysis of causal mutations and mechanisms in bacteria, a method for the identification of causal molecular pathways in cancer was developed. As bacteria and cancerous cells are both clonal, they can be treated similar in this context. The big differences are the amount of data available (many more samples are available in cancer) and the fact that cancer is a complex and heterogenic phenotype. Therefore we developed SSA-ME, which makes use of the concept that a causal molecular pathway has at most one mutation in a cancerous cell (mutual exclusivity). However, enforcing this criterion is computationally hard. SSA-ME is designed to cope with this problem and search for mutual exclusive patterns in relatively large datasets. SSA-ME was tested on cancer data from the TCGA PAN-cancer dataset. From the results we could, in addition to already known molecular pathways and mutated genes, predict the involvement of few rarely mutated genes.nrpages: 246status: publishe

    A Highly Accurate And Reliable Data Fusion Framework For Guiding The Visually Impaired

    Get PDF
    The world has approximately 285 million visually impaired (VI) people according to a report by the World Health Organization. Thirty-nine million people are estimated to be blind, whereas 246 million people are estimated to have impaired vision. An important factor that motivated this research is the fact that 90% of VI people live in developing countries. Several systems have been designed to improve the quality of the life of VI people and support the mobility of VI people. Unfortunately, none of these systems provides a complete solution for VI people, and the systems are very expensive. Therefore, this work presents an intelligent framework that includes several types of sensors embedded in a wearable device to support the visually impaired (VI) community. The proposed work is based on an integration of sensor-based and computer vision-based techniques in order to introduce an efficient and economical visual device. The designed algorithm is divided to two components: obstacle detection and collision avoidance. The system has been implemented and tested in real-time scenarios. A video dataset of 30 videos and an average of 700 frames per video was fed to the system for the testing purpose. The achieved 96.53% accuracy rate of the proposed sequence of techniques that are used for real-time detection component is based on a wide detection view that used two camera modules and a detection range of approximately 9 meters. The 98% accuracy rate was obtained for a larger dataset. However, the main contribution in this work is the proposed novel collision avoidance approach that is based on the image depth and fuzzy control rules. Through the use of x-y coordinate system, we were able to map the input frames, whereas each frame was divided into three areas vertically and further 1/3 of the height of that frame horizontally in order to specify the urgency of any existing obstacles within that frame. In addition, we were able to provide precise information to help the VI user in avoiding front obstacles using the fuzzy logic. The strength of this proposed approach is that it aids the VI users in avoiding 100% of all detected objects. Once the device is initialized, the VI user can confidently enter unfamiliar surroundings. Therefore, this implemented device can be described as accurate, reliable, friendly, light, and economically accessible that facilitates the mobility of VI people and does not require any previous knowledge of the surrounding environment. Finally, our proposed approach was compared with most efficient introduced techniques and proved to outperform them
    corecore