11,945 research outputs found

    Soft Computing Approach To Automatic Test Pattern Generation For Sequential Vlsi Circuit

    Get PDF
    Due to the constant development in the integrated circuits, the automatic test pattern generation problem become more vital for sequential vlsi circuits in these days. Also testing of integrating circuits and systems has become a difficult problem. In this paper we have discussed the problem of the automatic test sequence generation using particle swarm optimization(PSO) and technique for structure optimization of a deterministic test pattern generator using genetic algorithm(GA)

    Analysis and Test of the Effects of Single Event Upsets Affecting the Configuration Memory of SRAM-based FPGAs

    Get PDF
    SRAM-based FPGAs are increasingly relevant in a growing number of safety-critical application fields, ranging from automotive to aerospace. These application fields are characterized by a harsh radiation environment that can cause the occurrence of Single Event Upsets (SEUs) in digital devices. These faults have particularly adverse effects on SRAM-based FPGA systems because not only can they temporarily affect the behaviour of the system by changing the contents of flip-flops or memories, but they can also permanently change the functionality implemented by the system itself, by changing the content of the configuration memory. Designing safety-critical applications requires accurate methodologies to evaluate the system’s sensitivity to SEUs as early as possible during the design process. Moreover it is necessary to detect the occurrence of SEUs during the system life-time. To this purpose test patterns should be generated during the design process, and then applied to the inputs of the system during its operation. In this thesis we propose a set of software tools that could be used by designers of SRAM-based FPGA safety-critical applications to assess the sensitivity to SEUs of the system and to generate test patterns for in-service testing. The main feature of these tools is that they implement a model of SEUs affecting the configuration bits controlling the logic and routing resources of an FPGA device that has been demonstrated to be much more accurate than the classical stuck-at and open/short models, that are commonly used in the analysis of faults in digital devices. By keeping this accurate fault model into account, the proposed tools are more accurate than similar academic and commercial tools today available for the analysis of faults in digital circuits, that do not take into account the features of the FPGA technology.. In particular three tools have been designed and developed: (i) ASSESS: Accurate Simulator of SEuS affecting the configuration memory of SRAM-based FPGAs, a simulator of SEUs affecting the configuration memory of an SRAM-based FPGA system for the early assessment of the sensitivity to SEUs; (ii) UA2TPG: Untestability Analyzer and Automatic Test Pattern Generator for SEUs Affecting the Configuration Memory of SRAM-based FPGAs, a static analysis tool for the identification of the untestable SEUs and for the automatic generation of test patterns for in-service testing of the 100% of the testable SEUs; and (iii) GABES: Genetic Algorithm Based Environment for SEU Testing in SRAM-FPGAs, a Genetic Algorithm-based Environment for the generation of an optimized set of test patterns for in-service testing of SEUs. The proposed tools have been applied to some circuits from the ITC’99 benchmark. The results obtained from these experiments have been compared with results obtained by similar experiments in which we considered the stuck-at fault model, instead of the more accurate model for SEUs. From the comparison of these experiments we have been able to verify that the proposed software tools are actually more accurate than similar tools today available. In particular the comparison between results obtained using ASSESS with those obtained by fault injection has shown that the proposed fault simulator has an average error of 0:1% and a maximum error of 0:5%, while using a stuck-at fault simulator the average error with respect of the fault injection experiment has been 15:1% with a maximum error of 56:2%. Similarly the comparison between the results obtained using UA2TPG for the accurate SEU model, with the results obtained for stuck-at faults has shown an average difference of untestability of 7:9% with a maximum of 37:4%. Finally the comparison between fault coverages obtained by test patterns generated for the accurate model of SEUs and the fault coverages obtained by test pattern designed for stuck-at faults, shows that the former detect the 100% of the testable faults, while the latter reach an average fault coverage of 78:9%, with a minimum of 54% and a maximum of 93:16%

    Generating Test Patterns for Multiple Fault Detection in VLSI Circuits using Genetic Algorithm

    Get PDF
    In this paper we propose a method for the automatic test pattern generation for detecting multiple stuck-at-faults in combinational VLSI circuits using genetic algorithm (GA). Derivation of minimal test sets helps to reduce the post-production cost of testing combinational circuits. The GA proves to be an effective algorithm in finding optimum number of test patterns from the highly complex problem space. The paper describes the GA and results obtained for the ISCAS 1989 benchmark circuits

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    UA2TPG: An untestability analyzer and test pattern generator for SEUs in the configuration memory of SRAM-based FPGAs

    Get PDF
    This paper presents UA2TPG, a static analysis tool for the untestability proof and automatic test pattern generation for SEUs in the configuration memory of SRAM-based FPGA systems. The tool is based on the model-checking verification technique. An accurate fault model for both logic components and routing structures is adopted. Experimental results show that many circuits have a significant number of untestable faults, and their detection enables more efficient test pattern generation and on-line testing. The tool is mainly intended to support on-line testing of critical components in FPGA fault-tolerant systems

    Genetic algorithm as self-test path and circular self-test path design method

    Get PDF
    The paper presents the use of Genetic Algorithm to search for non-linear Autonomous Test Structures (ATS) in Built-In Testing approach. Such structures can include essentially STP and CSTP and their modifications. Non-linear structures are more difficult to analyze than the widely used structures such as independent Test Pattern Generator and the Test Response Compactor realized by Linear Feedback Shift Registers. To reduce time-consuming test simulation of sequential circuit, it was used an approach based on the stochastic model of pseudo-random testing. The use of stochastic model significantly affects the time effectiveness of the search for evolutionary autonomous structures. In test simulation procedure, the block of sequential circuit memory is not disconnected. This approach does not require a special selection of memory registers such as BILBOs. A series of studies to test circuits set ISCAS’89 are made. The results of the study are very promising

    ATPG for Faults Analysis in VLSI Circuits Using Immune Genetic Algorithm

    Get PDF
    As design trends move toward nanometer technology, new Automatic Test Pattern Generation (ATPG)problems are merging. During design validation, the effect of crosstalk on reliability and performance cannot be ignored. So new ATPG Techniques has to be developed for testing crosstalk faults which affect the timing behaviour of circuits. In this paper, we present a Genetic Algorithm (GA) based test generation for crosstalk induced delay faults in VLSI circuits. The GA produces reduced test set which contains as few as possible test vector pairs, which detect as many as possible crosstalk delay faults. It uses a crosstalk delay fault simulator which computes the fitness of each test sequence. Tests are generated for ISCAS’85 and scan version of ISCAS’89 benchmark circuits. Experimental results demonstrate that GA gives higher fault coverage and compact test vectors for most of the benchmark circuits
    corecore