2,980 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Joint space aspect reconstruction of wide-angle SAR exploiting sparsity

    Get PDF
    In this paper we present an algorithm for wide-angle synthetic aperture radar (SAR) image formation. Reconstruction of wide-angle SAR holds a promise of higher resolution and better information about a scene, but it also poses a number of challenges when compared to the traditional narrow-angle SAR. Most prominently, the isotropic point scattering model is no longer valid. We present an algorithm capable of producing high resolution reflectivity maps in both space and aspect, thus accounting for the anisotropic scattering behavior of targets. We pose the problem as a non-parametric three-dimensional inversion problem, with two constraints: magnitudes of the backscattered power are highly correlated across closely spaced look angles and the backscattered power originates from a small set of point scatterers. This approach considers jointly all scatterers in the scene across all azimuths, and exploits the sparsity of the underlying scattering field. We implement the algorithm and present reconstruction results on realistic data obtained from the XPatch Backhoe dataset

    SAR ATR Method with Limited Training Data via an Embedded Feature Augmenter and Dynamic Hierarchical-Feature Refiner

    Full text link
    Without sufficient data, the quantity of information available for supervised training is constrained, as obtaining sufficient synthetic aperture radar (SAR) training data in practice is frequently challenging. Therefore, current SAR automatic target recognition (ATR) algorithms perform poorly with limited training data availability, resulting in a critical need to increase SAR ATR performance. In this study, a new method to improve SAR ATR when training data are limited is proposed. First, an embedded feature augmenter is designed to enhance the extracted virtual features located far away from the class center. Based on the relative distribution of the features, the algorithm pulls the corresponding virtual features with different strengths toward the corresponding class center. The designed augmenter increases the amount of information available for supervised training and improves the separability of the extracted features. Second, a dynamic hierarchical-feature refiner is proposed to capture the discriminative local features of the samples. Through dynamically generated kernels, the proposed refiner integrates the discriminative local features of different dimensions into the global features, further enhancing the inner-class compactness and inter-class separability of the extracted features. The proposed method not only increases the amount of information available for supervised training but also extracts the discriminative features from the samples, resulting in superior ATR performance in problems with limited SAR training data. Experimental results on the moving and stationary target acquisition and recognition (MSTAR), OpenSARShip, and FUSAR-Ship benchmark datasets demonstrate the robustness and outstanding ATR performance of the proposed method in response to limited SAR training data

    Scattering Center Extraction and Recognition Based on ESPRIT Algorithm

    Get PDF
    Inverse Synthetic Aperture Radar (ISAR) generates high quality radar images even in low visibility. And it provides important physical features for space target recognition and location. This thesis focuses on ISAR rapid imaging, scattering center information extraction, and target classification. Based on the principle of Fourier imaging, the backscattering field of radar target is obtained by physical optics (PO) algorithm, and the relation between scattering field and objective function is deduced. According to the resolution formula, the incident parameters of electromagnetic wave are set reasonably. The interpolation method is used to realize three-dimensional (3D) simulation of aircraft target, and the results are compared with direct imaging results. CLEAN algorithm extracts scattering center information effectively. But due to the limitation of resolution parameters, traditional imaging can’t meet the actual demand. Therefore, the super-resolution Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm is used to obtain spatial target location information. The signal subspace and noise subspace are orthogonal to each other. By combining spatial smoothing method with ESPRIT algorithm, the physical characteristics of geometric target scattering center are obtained accurately. In particular, the proposed method is validated on complex 3D aircraft targets and it proves that this method is applied to most scattering mechanisms. The distribution of scattering centers reflects the geometric information of the target. Therefore, the electromagnetic image to be recognized and ESPRIT image are matched by the domain matching method. And the classification results under different radii are obtained. In addition, because the neural network can extract rich image features, the improved ALEX network is used to classify and recognize target data processed by ESPRIT. It proves that ESPRIT algorithm can be used to expand the existing datasets and prepare for future identification of targets in real environments. Final a visual classification system is constructed to visually display the results

    Sparse Signal Models for Data Augmentation in Deep Learning ATR

    Full text link
    Automatic Target Recognition (ATR) algorithms classify a given Synthetic Aperture Radar (SAR) image into one of the known target classes using a set of training images available for each class. Recently, learning methods have shown to achieve state-of-the-art classification accuracy if abundant training data is available, sampled uniformly over the classes, and their poses. In this paper, we consider the task of ATR with a limited set of training images. We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm, such as a Convolutional neural network (CNN). The proposed data augmentation method employs a limited persistence sparse modeling approach, capitalizing on commonly observed characteristics of wide-angle synthetic aperture radar (SAR) imagery. Specifically, we exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting. Using this estimated model, we synthesize new images at poses and sub-pixel translations not available in the given data to augment CNN's training data. The experimental results show that for the training data starved region, the proposed method provides a significant gain in the resulting ATR algorithm's generalization performance.Comment: 12 pages, 5 figures, to be submitted to IEEE Transactions on Geoscience and Remote Sensin

    Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle Recognition

    Full text link
    Vehicle recognition is a fundamental problem in SAR image interpretation. However, robustly recognizing vehicle targets is a challenging task in SAR due to the large intraclass variations and small interclass variations. Additionally, the lack of large datasets further complicates the task. Inspired by the analysis of target signature variations and deep learning explainability, this paper proposes a novel domain alignment framework named the Hierarchical Disentanglement-Alignment Network (HDANet) to achieve robustness under various operating conditions. Concisely, HDANet integrates feature disentanglement and alignment into a unified framework with three modules: domain data generation, multitask-assisted mask disentanglement, and domain alignment of target features. The first module generates diverse data for alignment, and three simple but effective data augmentation methods are designed to simulate target signature variations. The second module disentangles the target features from background clutter using the multitask-assisted mask to prevent clutter from interfering with subsequent alignment. The third module employs a contrastive loss for domain alignment to extract robust target features from generated diverse data and disentangled features. Lastly, the proposed method demonstrates impressive robustness across nine operating conditions in the MSTAR dataset, and extensive qualitative and quantitative analyses validate the effectiveness of our framework
    corecore