7,267 research outputs found

    Activity Report: Automatic Control 2012

    Get PDF

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Technology for large space systems: A special bibliography with indexes (supplement 03)

    Get PDF
    A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Evolutionary swarm robotics: a theoretical and methodological itinerary from individual neuro-controllers to collective behaviours

    Get PDF
    In the last decade, swarm robotics gathered much attention in the research community. By drawing inspiration from social insects and other self-organizing systems, it focuses on large robot groups featuring distributed control, adaptation, high robustness, and flexibility. Various reasons lay behind this interest in similar multi-robot systems. Above all, inspiration comes from the observation of social activities, which are based on concepts like division of labor, cooperation, and communication. If societies are organized in such a way in order to be more efficient, then robotic groups also could benefit from similar paradigms

    Temporal Logic Motion Planning

    Get PDF
    In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain and ever-changing environment, and (b) The accomplishment of high-level specification tasks which are more than just the traditional planning problem (i.e., start at initial state A and go to the goal state B) are considered. The use of theory of computation and formal methods, tools and techniques present a promising direction of research in solving motion planning problems that are influenced by high-level specification of complex tasks. The review, therefore, focuses only on those papers that use the aforementioned tools and techniques to solve a motion planning problem. A proposed robust platform that deals with the complexity of more expressive temporal logics is also presented.Defence Science Journal, 2010, 60(1), pp.23-38, DOI:http://dx.doi.org/10.14429/dsj.60.9

    Coordination of Multirobot Teams and Groups in Constrained Environments: Models, Abstractions, and Control Policies

    Get PDF
    Robots can augment and even replace humans in dangerous environments, such as search and rescue and reconnaissance missions, yet robots used in these situations are largely tele-operated. In most cases, the robots\u27 performance depends on the operator\u27s ability to control and coordinate the robots, resulting in increased response time and poor situational awareness, and hindering multirobot cooperation. Many factors impede extended autonomy in these situations, including the unique nature of individual tasks, the number of robots needed, the complexity of coordinating heterogeneous robot teams, and the need to operate safely. These factors can be partly addressed by having many inexpensive robots and by control policies that provide guarantees on convergence and safety. In this thesis, we address the problem of synthesizing control policies for navigating teams of robots in constrained environments while providing guarantees on convergence and safety. The approach is as follows. We first model the configuration space of the group (a space in which the robots cannot violate the constraints) as a set of polytopes. For a group with a common goal configuration, we reduce complexity by constructing a configuration space for an abstracted group state. We then construct a discrete representation of the configuration space, on which we search for a path to the goal. Based on this path, we synthesize feedback controllers, decentralized affine controllers for kinematic systems and nonlinear feedback controllers for dynamical systems, on the polytopes, sequentially composing controllers to drive the system to the goal. We demonstrate the use of this method in urban environments and on groups of dynamical systems such as quadrotors. We reduce the complexity of multirobot coordination by using an informed graph search to simultaneously build the configuration space and find a path in its discrete representation to the goal. Furthermore, by using an abstraction on groups of robots we dissociate complexity from the number of robots in the group. Although the controllers are designed for navigation in known environments, they are indeed more versatile, as we demonstrate in a concluding simulation of six robots in a partially unknown environment with evolving communication links, object manipulation, and stigmergic interactions

    Activity Report: Automatic Control 2013

    Get PDF

    Decentralized Control of Large Collaborative Swarms using Random Finite Set Theory

    Full text link
    Controlling large swarms of robotic agents presents many challenges including, but not limited to, computational complexity due to a large number of agents, uncertainty in the functionality of each agent in the swarm, and uncertainty in the swarm's configuration. The contribution of this work is to decentralize Random Finite Set (RFS) control of large collaborative swarms for control of individual agents. The RFS control formulation assumes that the topology underlying the swarm control is complete and uses the complete graph in a centralized manner. To generalize the control topology in a localized or decentralized manner, sparse LQR is used to sparsify the RFS control gain matrix obtained using iterative LQR. This allows agents to use information of agents near each other (localized topology) or only the agent's own information (decentralized topology) to make a control decision. Sparsity and performance for decentralized RFS control are compared for different degrees of localization in feedback control gains which show that the stability and performance compared to centralized control do not degrade significantly in providing RFS control for large collaborative swarms.Comment: arXiv admin note: text overlap with arXiv:1810.0069
    corecore