2,300 research outputs found

    Estimating Speaking Rate by Means of Rhythmicity Parameters

    Get PDF
    In this paper we present a speech rate estimator based on so-called rhythmicity features derived from a modified version of the short-time energy envelope. To evaluate the new method, it is compared to a traditional speech rate estimator on the basis of semi-automatic segmentation. Speech material from the Alcohol Language Corpus (ALC) covering intoxicated and sober speech of different speech styles provides a statistically sound foundation to test upon. The proposed measure clearly correlates with the semi-automatically determined speech rate and seems to be robust across speech styles and speaker states

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Laying the Foundation for In-car Alcohol Detection by Speech

    Get PDF
    The fact that an increasing number of functions in the automobile are and will be controlled by speech of the driver rises the question whether this speech input may be used to detect a possible alcoholic intoxication of the driver. For that matter a large part of the new Alcohol Language Corpus (ALC) edited by the Bavarian Archive of Speech Signals (BAS) will be used for a broad statistical investigation of possible feature candidates for classification. In this contribution we present the motivation and the design of the ALC corpus as well as first results from fundamental frequency and rhythm analysis. Our analysis by comparing sober and alcoholized speech of the same individuals suggests that there are in fact promising features that can automatically be derived from the speech signal during the speech recognition process and will indicate intoxication for most speakers

    An acoustic-phonetic approach in automatic Arabic speech recognition

    Get PDF
    In a large vocabulary speech recognition system the broad phonetic classification technique is used instead of detailed phonetic analysis to overcome the variability in the acoustic realisation of utterances. The broad phonetic description of a word is used as a means of lexical access, where the lexicon is structured into sets of words sharing the same broad phonetic labelling. This approach has been applied to a large vocabulary isolated word Arabic speech recognition system. Statistical studies have been carried out on 10,000 Arabic words (converted to phonemic form) involving different combinations of broad phonetic classes. Some particular features of the Arabic language have been exploited. The results show that vowels represent about 43% of the total number of phonemes. They also show that about 38% of the words can uniquely be represented at this level by using eight broad phonetic classes. When introducing detailed vowel identification the percentage of uniquely specified words rises to 83%. These results suggest that a fully detailed phonetic analysis of the speech signal is perhaps unnecessary. In the adopted word recognition model, the consonants are classified into four broad phonetic classes, while the vowels are described by their phonemic form. A set of 100 words uttered by several speakers has been used to test the performance of the implemented approach. In the implemented recognition model, three procedures have been developed, namely voiced-unvoiced-silence segmentation, vowel detection and identification, and automatic spectral transition detection between phonemes within a word. The accuracy of both the V-UV-S and vowel recognition procedures is almost perfect. A broad phonetic segmentation procedure has been implemented, which exploits information from the above mentioned three procedures. Simple phonological constraints have been used to improve the accuracy of the segmentation process. The resultant sequence of labels are used for lexical access to retrieve the word or a small set of words sharing the same broad phonetic labelling. For the case of having more than one word-candidates, a verification procedure is used to choose the most likely one

    Automatic prosodic analysis for computer aided pronunciation teaching

    Get PDF
    Correct pronunciation of spoken language requires the appropriate modulation of acoustic characteristics of speech to convey linguistic information at a suprasegmental level. Such prosodic modulation is a key aspect of spoken language and is an important component of foreign language learning, for purposes of both comprehension and intelligibility. Computer aided pronunciation teaching involves automatic analysis of the speech of a non-native talker in order to provide a diagnosis of the learner's performance in comparison with the speech of a native talker. This thesis describes research undertaken to automatically analyse the prosodic aspects of speech for computer aided pronunciation teaching. It is necessary to describe the suprasegmental composition of a learner's speech in order to characterise significant deviations from a native-like prosody, and to offer some kind of corrective diagnosis. Phonological theories of prosody aim to describe the suprasegmental composition of speech..

    On the automatic segmentation of transcribed words

    Get PDF

    Prosody-Based Automatic Segmentation of Speech into Sentences and Topics

    Get PDF
    A crucial step in processing speech audio data for information extraction, topic detection, or browsing/playback is to segment the input into sentence and topic units. Speech segmentation is challenging, since the cues typically present for segmenting text (headers, paragraphs, punctuation) are absent in spoken language. We investigate the use of prosody (information gleaned from the timing and melody of speech) for these tasks. Using decision tree and hidden Markov modeling techniques, we combine prosodic cues with word-based approaches, and evaluate performance on two speech corpora, Broadcast News and Switchboard. Results show that the prosodic model alone performs on par with, or better than, word-based statistical language models -- for both true and automatically recognized words in news speech. The prosodic model achieves comparable performance with significantly less training data, and requires no hand-labeling of prosodic events. Across tasks and corpora, we obtain a significant improvement over word-only models using a probabilistic combination of prosodic and lexical information. Inspection reveals that the prosodic models capture language-independent boundary indicators described in the literature. Finally, cue usage is task and corpus dependent. For example, pause and pitch features are highly informative for segmenting news speech, whereas pause, duration and word-based cues dominate for natural conversation.Comment: 30 pages, 9 figures. To appear in Speech Communication 32(1-2), Special Issue on Accessing Information in Spoken Audio, September 200

    Correlates of linguistic rhythm in the speech signal

    Get PDF
    Spoken languages have been classified by linguists according to their rhythmic properties, and psycholinguists have relied on this classification to account for infants’ capacity to discriminate languages. Although researchers have measured many speech signal properties, they have failed to identify reliable acoustic characteristics for language classes. This paper presents instrumental measurements based on a consonant/vowel segmentation for eight languages. The measurements suggest that intuitive rhythm types reflect specific phonological properties, which in turn are signaled by the acoustic/phonetic properties of speech. The data support the notion of rhythm classes and also allow the simulation of infant language discrimination, consistent with the hypothesis that newborns rely on a coarse segmentation of speech. A hypothesis is proposed regarding the role of rhythm perception in language acquisition

    Rhythmic unit extraction and modelling for automatic language identification

    Get PDF
    International audienceThis paper deals with an approach to Automatic Language Identification based on rhythmic modelling. Beside phonetics and phonotactics, rhythm is actually one of the most promising features to be considered for language identification, even if its extraction and modelling are not a straightforward issue. Actually, one of the main problems to address is what to model. In this paper, an algorithm of rhythm extraction is described: using a vowel detection algorithm, rhythmic units related to syllables are segmented. Several parameters are extracted (consonantal and vowel duration, cluster complexity) and modelled with a Gaussian Mixture. Experiments are performed on read speech for 7 languages (English, French, German, Italian, Japanese, Mandarin and Spanish) and results reach up to 86 ± 6% of correct discrimination between stress-timed mora-timed and syllable-timed classes of languages, and to 67 ± 8% percent of correct language identification on average for the 7 languages with utterances of 21 seconds. These results are commented and compared with those obtained with a standard acoustic Gaussian mixture modelling approach (88 ± 5% of correct identification for the 7-languages identification task)
    corecore