1,109 research outputs found

    A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Get PDF
    Using Hidden Markov Models (HMMs) as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks

    A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Get PDF
    Using Hidden Markov Models (HMMs) as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks

    Systematic Review of Machine Learning Approaches for Detecting Developmental Stuttering

    Get PDF
    A systematic review of the literature on statistical and machine learning schemes for identifying symptoms of developmental stuttering from audio recordings is reported. Twenty-seven papers met the quality standards that were set. Comparison of results across studies was not possible because training and testing data, model architecture and feature inputs varied across studies. The limitations that were identified for comparison across studies included: no indication of application for the work, data were selected for training and testing models in ways that could lead to biases, studies used different datasets and attempted to locate different symptom types, feature inputs were reported in different ways and there was no standard way of reporting performance statistics. Recommendations were made about how these problems can be addressed in future work on this topic

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    ์šด์œจ ์ •๋ณด๋ฅผ ์ด์šฉํ•œ ๋งˆ๋น„๋ง์žฅ์•  ์Œ์„ฑ ์ž๋™ ๊ฒ€์ถœ ๋ฐ ํ‰๊ฐ€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ธ๋ฌธ๋Œ€ํ•™ ์–ธ์–ดํ•™๊ณผ, 2020. 8. Minhwa Chung.๋ง์žฅ์• ๋Š” ์‹ ๊ฒฝ๊ณ„ ๋˜๋Š” ํ‡ดํ–‰์„ฑ ์งˆํ™˜์—์„œ ๊ฐ€์žฅ ๋นจ๋ฆฌ ๋‚˜ํƒ€๋‚˜๋Š” ์ฆ ์ƒ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋งˆ๋น„๋ง์žฅ์• ๋Š” ํŒŒํ‚จ์Šจ๋ณ‘, ๋‡Œ์„ฑ ๋งˆ๋น„, ๊ทผ์œ„์ถ•์„ฑ ์ธก์‚ญ ๊ฒฝํ™”์ฆ, ๋‹ค๋ฐœ์„ฑ ๊ฒฝํ™”์ฆ ํ™˜์ž ๋“ฑ ๋‹ค์–‘ํ•œ ํ™˜์ž๊ตฐ์—์„œ ๋‚˜ํƒ€๋‚œ๋‹ค. ๋งˆ๋น„๋ง์žฅ์• ๋Š” ์กฐ์Œ๊ธฐ๊ด€ ์‹ ๊ฒฝ์˜ ์†์ƒ์œผ๋กœ ๋ถ€์ •ํ™•ํ•œ ์กฐ์Œ์„ ์ฃผ์š” ํŠน์ง•์œผ๋กœ ๊ฐ€์ง€๊ณ , ์šด์œจ์—๋„ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋œ๋‹ค. ์„ ํ–‰ ์—ฐ๊ตฌ์—์„œ๋Š” ์šด์œจ ๊ธฐ๋ฐ˜ ์ธก์ •์น˜๋ฅผ ๋น„์žฅ์•  ๋ฐœํ™”์™€ ๋งˆ๋น„๋ง์žฅ์•  ๋ฐœํ™”๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๊ฒƒ์— ์‚ฌ์šฉํ–ˆ๋‹ค. ์ž„์ƒ ํ˜„์žฅ์—์„œ๋Š” ๋งˆ๋น„๋ง์žฅ์• ์— ๋Œ€ํ•œ ์šด์œจ ๊ธฐ๋ฐ˜ ๋ถ„์„์ด ๋งˆ๋น„๋ง์žฅ์• ๋ฅผ ์ง„๋‹จํ•˜๊ฑฐ๋‚˜ ์žฅ์•  ์–‘์ƒ์— ๋”ฐ๋ฅธ ์•Œ๋งž์€ ์น˜๋ฃŒ๋ฒ•์„ ์ค€๋น„ํ•˜๋Š” ๊ฒƒ์— ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋งˆ๋น„๋ง์žฅ์• ๊ฐ€ ์šด์œจ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์–‘์ƒ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋งˆ๋น„๋ง์žฅ์• ์˜ ์šด์œจ ํŠน์ง•์„ ๊ธด๋ฐ€ํ•˜๊ฒŒ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ๊ตฌ์ฒด ์ ์œผ๋กœ, ์šด์œจ์ด ์–ด๋–ค ์ธก๋ฉด์—์„œ ๋งˆ๋น„๋ง์žฅ์• ์— ์˜ํ–ฅ์„ ๋ฐ›๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์šด์œจ ์• ๊ฐ€ ์žฅ์•  ์ •๋„์— ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š”์ง€์— ๋Œ€ํ•œ ๋ถ„์„์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์Œ๋†’์ด, ์Œ์งˆ, ๋ง์†๋„, ๋ฆฌ๋“ฌ ๋“ฑ ์šด์œจ์„ ๋‹ค์–‘ํ•œ ์ธก๋ฉด์— ์„œ ์‚ดํŽด๋ณด๊ณ , ๋งˆ๋น„๋ง์žฅ์•  ๊ฒ€์ถœ ๋ฐ ํ‰๊ฐ€์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ถ”์ถœ๋œ ์šด์œจ ํŠน์ง•๋“ค์€ ๋ช‡ ๊ฐ€์ง€ ํŠน์ง• ์„ ํƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ตœ์ ํ™”๋˜์–ด ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ์˜ ์ž…๋ ฅ๊ฐ’์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋ถ„๋ฅ˜๊ธฐ์˜ ์„ฑ๋Šฅ์€ ์ •ํ™•๋„, ์ •๋ฐ€๋„, ์žฌํ˜„์œจ, F1-์ ์ˆ˜๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์€ ์žฅ์•  ์ค‘์ฆ๋„(๊ฒฝ๋„, ์ค‘๋“ฑ๋„, ์‹ฌ๋„)์— ๋”ฐ๋ผ ์šด์œจ ์ •๋ณด ์‚ฌ์šฉ์˜ ์œ ์šฉ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์žฅ์•  ๋ฐœํ™” ์ˆ˜์ง‘์ด ์–ด๋ ค์šด ๋งŒํผ, ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ต์ฐจ ์–ธ์–ด ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ํ•œ๊ตญ์–ด์™€ ์˜์–ด ์žฅ์•  ๋ฐœํ™”๊ฐ€ ํ›ˆ๋ จ ์…‹์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ํ…Œ์ŠคํŠธ์…‹์œผ๋กœ๋Š” ๊ฐ ๋ชฉํ‘œ ์–ธ์–ด๋งŒ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ธ ๊ฐ€์ง€๋ฅผ ์‹œ์‚ฌํ•œ๋‹ค. ์ฒซ์งธ, ์šด์œจ ์ •๋ณด ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์€ ๋งˆ๋น„๋ง์žฅ์•  ๊ฒ€์ถœ ๋ฐ ํ‰๊ฐ€์— ๋„์›€์ด ๋œ๋‹ค. MFCC ๋งŒ์„ ์‚ฌ์šฉํ–ˆ์„ ๋•Œ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ, ์šด์œจ ์ •๋ณด๋ฅผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ํ•œ๊ตญ์–ด์™€ ์˜์–ด ๋ฐ์ดํ„ฐ์…‹ ๋ชจ๋‘์—์„œ ๋„์›€์ด ๋˜์—ˆ๋‹ค. ๋‘˜์งธ, ์šด์œจ ์ •๋ณด๋Š” ํ‰๊ฐ€์— ํŠนํžˆ ์œ ์šฉํ•˜๋‹ค. ์˜์–ด์˜ ๊ฒฝ์šฐ ๊ฒ€์ถœ๊ณผ ํ‰๊ฐ€์—์„œ ๊ฐ๊ฐ 1.82%์™€ 20.6%์˜ ์ƒ๋Œ€์  ์ •ํ™•๋„ ํ–ฅ์ƒ์„ ๋ณด์˜€๋‹ค. ํ•œ๊ตญ์–ด์˜ ๊ฒฝ์šฐ ๊ฒ€์ถœ์—์„œ๋Š” ํ–ฅ์ƒ์„ ๋ณด์ด์ง€ ์•Š์•˜์ง€๋งŒ, ํ‰๊ฐ€์—์„œ๋Š” 13.6%์˜ ์ƒ๋Œ€์  ํ–ฅ์ƒ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์…‹์งธ, ๊ต์ฐจ ์–ธ์–ด ๋ถ„๋ฅ˜๊ธฐ๋Š” ๋‹จ์ผ ์–ธ์–ด ๋ถ„๋ฅ˜๊ธฐ๋ณด๋‹ค ํ–ฅ์ƒ๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ๊ต์ฐจ์–ธ์–ด ๋ถ„๋ฅ˜๊ธฐ๋Š” ๋‹จ์ผ ์–ธ์–ด ๋ถ„๋ฅ˜๊ธฐ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ ์ƒ๋Œ€์ ์œผ๋กœ 4.12% ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. ์ด๊ฒƒ์€ ํŠน์ • ์šด์œจ ์žฅ์• ๋Š” ๋ฒ”์–ธ์–ด์  ํŠน์ง•์„ ๊ฐ€์ง€๋ฉฐ, ๋‹ค๋ฅธ ์–ธ์–ด ๋ฐ์ดํ„ฐ๋ฅผ ํฌํ•จ์‹œ์ผœ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ํ›ˆ๋ จ ์…‹์„ ๋ณด์™„ํ•  ์ˆ˜ ์žˆ ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.One of the earliest cues for neurological or degenerative disorders are speech impairments. Individuals with Parkinsons Disease, Cerebral Palsy, Amyotrophic lateral Sclerosis, Multiple Sclerosis among others are often diagnosed with dysarthria. Dysarthria is a group of speech disorders mainly affecting the articulatory muscles which eventually leads to severe misarticulation. However, impairments in the suprasegmental domain are also present and previous studies have shown that the prosodic patterns of speakers with dysarthria differ from the prosody of healthy speakers. In a clinical setting, a prosodic-based analysis of dysarthric speech can be helpful for diagnosing the presence of dysarthria. Therefore, there is a need to not only determine how the prosody of speech is affected by dysarthria, but also what aspects of prosody are more affected and how prosodic impairments change by the severity of dysarthria. In the current study, several prosodic features related to pitch, voice quality, rhythm and speech rate are used as features for detecting dysarthria in a given speech signal. A variety of feature selection methods are utilized to determine which set of features are optimal for accurate detection. After selecting an optimal set of prosodic features we use them as input to machine learning-based classifiers and assess the performance using the evaluation metrics: accuracy, precision, recall and F1-score. Furthermore, we examine the usefulness of prosodic measures for assessing different levels of severity (e.g. mild, moderate, severe). Finally, as collecting impaired speech data can be difficult, we also implement cross-language classifiers where both Korean and English data are used for training but only one language used for testing. Results suggest that in comparison to solely using Mel-frequency cepstral coefficients, including prosodic measurements can improve the accuracy of classifiers for both Korean and English datasets. In particular, large improvements were seen when assessing different severity levels. For English a relative accuracy improvement of 1.82% for detection and 20.6% for assessment was seen. The Korean dataset saw no improvements for detection but a relative improvement of 13.6% for assessment. The results from cross-language experiments showed a relative improvement of up to 4.12% in comparison to only using a single language during training. It was found that certain prosodic impairments such as pitch and duration may be language independent. Therefore, when training sets of individual languages are limited, they may be supplemented by including data from other languages.1. Introduction 1 1.1. Dysarthria 1 1.2. Impaired Speech Detection 3 1.3. Research Goals & Outline 6 2. Background Research 8 2.1. Prosodic Impairments 8 2.1.1. English 8 2.1.2. Korean 10 2.2. Machine Learning Approaches 12 3. Database 18 3.1. English-TORGO 20 3.2. Korean-QoLT 21 4. Methods 23 4.1. Prosodic Features 23 4.1.1. Pitch 23 4.1.2. Voice Quality 26 4.1.3. Speech Rate 29 4.1.3. Rhythm 30 4.2. Feature Selection 34 4.3. Classification Models 38 4.3.1. Random Forest 38 4.3.1. Support Vector Machine 40 4.3.1 Feed-Forward Neural Network 42 4.4. Mel-Frequency Cepstral Coefficients 43 5. Experiment 46 5.1. Model Parameters 47 5.2. Training Procedure 48 5.2.1. Dysarthria Detection 48 5.2.2. Severity Assessment 50 5.2.3. Cross-Language 51 6. Results 52 6.1. TORGO 52 6.1.1. Dysarthria Detection 52 6.1.2. Severity Assessment 56 6.2. QoLT 57 6.2.1. Dysarthria Detection 57 6.2.2. Severity Assessment 58 6.1. Cross-Language 59 7. Discussion 62 7.1. Linguistic Implications 62 7.2. Clinical Applications 65 8. Conclusion 67 References 69 Appendix 76 Abstract in Korean 79Maste

    MACHINE LEARNING USING SPEECH UTTERANCES FOR PARKINSON DISEASE DETECTION

    Get PDF
    Pathophysiological recordings of patients measured from various testing methods are frequently used in the medical field for determining symptoms as well as for probability prediction for selected diseases. There are numerous symptoms among the Parkinsonโ€™s disease (PD) population, however changes in speech and articulation โ€“ is potentially the most significant biomarker. This article is focused on PD diagnosis classification based on their speech signals using pattern recognition methods (AdaBoost, Bagged trees, Quadratic SVM and k-NN). The dataset investigated in the article consists of 30 PD and 30 HC individualsโ€™ voice measurements, with each individual being represented with 2 recordings within the dataset. Training signals for PD and HC underwent an extraction of relatively well-discriminating features relating to energy and spectral speech properties. Model implementations included a 5-fold cross validation. The accuracy of the values obtained employing the models was calculated using the confusion matrix. The average value of the overall accuracy = 82.3 % and averaged AUC = 0.88 (min. AUC = 0.86) on the available data

    An acoustic-phonetic approach in automatic Arabic speech recognition

    Get PDF
    In a large vocabulary speech recognition system the broad phonetic classification technique is used instead of detailed phonetic analysis to overcome the variability in the acoustic realisation of utterances. The broad phonetic description of a word is used as a means of lexical access, where the lexicon is structured into sets of words sharing the same broad phonetic labelling. This approach has been applied to a large vocabulary isolated word Arabic speech recognition system. Statistical studies have been carried out on 10,000 Arabic words (converted to phonemic form) involving different combinations of broad phonetic classes. Some particular features of the Arabic language have been exploited. The results show that vowels represent about 43% of the total number of phonemes. They also show that about 38% of the words can uniquely be represented at this level by using eight broad phonetic classes. When introducing detailed vowel identification the percentage of uniquely specified words rises to 83%. These results suggest that a fully detailed phonetic analysis of the speech signal is perhaps unnecessary. In the adopted word recognition model, the consonants are classified into four broad phonetic classes, while the vowels are described by their phonemic form. A set of 100 words uttered by several speakers has been used to test the performance of the implemented approach. In the implemented recognition model, three procedures have been developed, namely voiced-unvoiced-silence segmentation, vowel detection and identification, and automatic spectral transition detection between phonemes within a word. The accuracy of both the V-UV-S and vowel recognition procedures is almost perfect. A broad phonetic segmentation procedure has been implemented, which exploits information from the above mentioned three procedures. Simple phonological constraints have been used to improve the accuracy of the segmentation process. The resultant sequence of labels are used for lexical access to retrieve the word or a small set of words sharing the same broad phonetic labelling. For the case of having more than one word-candidates, a verification procedure is used to choose the most likely one

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The Models and Analysis of Vocal Emissions with Biomedical Applications (MAVEBA) workshop came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies
    • โ€ฆ
    corecore