40 research outputs found

    Seabed mapping in coastal shallow waters using high resolution multispectral and hyperspectral imagery

    Get PDF
    Coastal ecosystems experience multiple anthropogenic and climate change pressures. To monitor the variability of the benthic habitats in shallow waters, the implementation of effective strategies is required to support coastal planning. In this context, high-resolution remote sensing data can be of fundamental importance to generate precise seabed maps in coastal shallow water areas. In this work, satellite and airborne multispectral and hyperspectral imagery were used to map benthic habitats in a complex ecosystem. In it, submerged green aquatic vegetation meadows have low density, are located at depths up to 20 m, and the sea surface is regularly affected by persistent local winds. A robust mapping methodology has been identified after a comprehensive analysis of different corrections, feature extraction, and classification approaches. In particular, atmospheric, sunglint, and water column corrections were tested. In addition, to increase the mapping accuracy, we assessed the use of derived information from rotation transforms, texture parameters, and abundance maps produced by linear unmixing algorithms. Finally, maximum likelihood (ML), spectral angle mapper (SAM), and support vector machine (SVM) classification algorithms were considered at the pixel and object levels. In summary, a complete processing methodology was implemented, and results demonstrate the better performance of SVM but the higher robustness of ML to the nature of information and the number of bands considered. Hyperspectral data increases the overall accuracy with respect to the multispectral bands (4.7% for ML and 9.5% for SVM) but the inclusion of additional features, in general, did not significantly improve the seabed map quality.Peer ReviewedPostprint (published version

    Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2.

    Get PDF
    International audienceMany Earth observing sensors have been designed, built and launched with primary objectives of either terrestrial or ocean remote sensing applications. Often the data from these sensors are also used for freshwater, estuarine and coastal water quality observations, bathymetry and benthic mapping. However, such land and ocean specific sensors are not designed for these complex aquatic environments and consequently are not likely to perform as well as a dedicated sensor would. As a CEOS action, CSIRO and DLR have taken the lead on a feasibility assessment to determine the benefits and technological difficulties of designing an Earth observing satellite mission focused on the biogeochemistry of inland, estuarine, deltaic and near coastal waters as well as mapping macrophytes, macro-algae, sea grasses and coral reefs. These environments need higher spatial resolution than current and planned ocean colour sensors offer and need higher spectral resolution than current and planned land Earth observing sensors offer (with the exception of several R&D type imaging spectrometry satellite missions). The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for removing atmospheric and air-water interface effects. These requirements are very close to defining an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands would ideally have 5 nm spacing and Full Width Half Maximum (FWHM), although it may be necessary to go to 8 nm wide spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25% of river reaches globally (at ~17 m resolution) whilst maintaining sufficient radiometric resolution

    NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms

    Full text link
    The 2017–2027 National Academies' Decadal Survey, Thriving on Our Changing Planet, recommended Surface Biology and Geology (SBG) as a “Designated Targeted Observable” (DO). The SBG DO is based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380–2500 nm; ~30 m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3–5 μm; TIR: 8–12 μm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algorithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); (v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists

    The importance of a coastal embayment for migrating humpback whale mother-calf groups: characterising movement patterns using geospatial methods

    Get PDF
    Humpback whale populations that migrate along Australian coastlines each year have rapidly increased in population size since modern whaling. This population growth has been associated with increased presence and activity of humpback whales in coastal embayments along the Australian coastlines, particularly mother-calf groups who use the sheltered waters to conserve energy. However, growing numbers in nearshore areas also increases the potential for disturbance from Defence, recreational and commercial activities. The disturbance of resting mothers and calves may have longer term implications for calf growth during key development stages. Jervis Bay is a coastal embayment in which increased numbers of mother-calf groups have been observed in the last two decades and is also an area of significant anthropogenic activity. This thesis aims to assess the significance of Jervis Bay to humpback whale groups using novel survey methods. The movement patterns in the Bay are characterised and compared with that observed for humpback whales migrating south offshore. During the peak timing for humpback whales passing Jervis Bay in 2018, 2019, and 2021, land-based, boat-based, and unoccupied aerial vehicle (UAV) survey methods were conducted. Results showed that a disproportionately high percentage of groups entering the Bay contained a calf and that travel of mother-calf groups in the Bay was significantly slower and less directed than movements of these groups offshore. Resting and nurturing behaviour was observed in aerial footage. These findings support the argument for identifying Jervis Bay as a resting ground for mother-calf humpback whale groups of the east Australia (substock E1) population. With improved understanding of their behaviour and movement in the Bay, there is a need to monitor and manage increased anthropogenic activities during the southern migration season

    Innovation Technologies and Applications for Coastal Archaeological sites

    Get PDF

    Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia

    Get PDF
    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit

    Opportunities for seagrass research derived from remote sensing : a review of current methods

    Get PDF
    Seagrass communities provide critical ecosystem and provisioning services for both human populations and a wide range of associated species globally. However, it has been reported that seagrass area is decreasing at a rapid rate in many parts of the world, mostly due to anthropogenic activities including global change (pollution and climate change). The aim of this review article is to highlight the range of current tools for studying seagrasses as well as identify the benefits and limitations of a range of remote sensing and traditional methodologies. This paper provides a discussion of the ecological importance of seagrass meadows, and recent trends and developments in seagrass research methods are discussed including the use of satellite images and aerial photographs for seagrass monitoring and various image processing steps that are frequently utilised for seagrass mapping. The extensive use of various optical, Radar and LiDAR data for seagrass research in recent years has also been described in detail. The review concludes that the recent explosion of new methods and tools available from a wide range of platforms combined with the recent recognition of the importance of seagrasses provides the research community with an excellent opportunity to undertake a range of timely research. This research should include mapping the extent and distribution of seagrasses, identifying the drivers of change and factors that confer resilience, as well as quantification of the ecosystem services provided. Whilst remotely sensed data provides an important new tool it should be used in conjunction with traditional methods for validation and with a knowledge of the limitations of results and careful interpretation

    Determining estuarine seagrass density measures from low altitude multispectral imagery flown by remotely piloted aircraft

    Get PDF
    Seagrass is the subject of significant conservation research. Seagrass is ecologically important and of significant value to human interests. Many seagrass species are thought to be in decline. Degradation of seagrass populations are linked to anthropogenic environmental issues. Effective management requires robust monitoring that is affordable at large scale. Remote sensing methods using satellite and aircraft imagery enable mapping of seagrass populations at landscape scale. Aerial monitoring of a seagrass population can require imagery of high spatial and/or spectral resolution for successful feature extraction across all levels of seagrass density. Remotely piloted aircraft (RPA) can operate close to the ground under precise flight control enabling repeated surveys in high detail with accurate revisit-positioning. This study evaluates a method for assessing intertidal estuarine seagrass (Zostera muelleri) presence/absence and coverage density using multispectral imagery collected by a remotely piloted aircraft (RPA) flying at 30 m above the estuary surface (2.7 cm ground sampling distance). The research was conducted at Wharekawa Harbour on the eastern coast of the Coromandel Peninsula, North Island, New Zealand. Differential drainage of residual ebb waters from the surface of an estuary at low tide creates a mosaic of drying sediment, draining surface and static shallow pooling that has potential to interfere with spectral observations. The field surveys demonstrated that despite minor shifts in the spectral coordinates of seagrass and other surface material, there was no apparent difference in image classification outcome from the time of bulk tidal water clearance to the time of returning tidal flood. For the survey specification tested, classification accuracy increased with decreasing segmentation scale. Pixel-based image analysis (PBIA) achieved higher classification accuracy than object-based image analysis (OBIA) assessed at a range of segmentation scales. Contaminating objects such as shells and detritus can become aggregated within polygon objects when OBIA is applied but remain as isolated objects under PBIA at this image resolution. There was clear separability of spectra for seagrass and sediment, but shell and detritus confounded the classification of seagrass density in some situations. High density seagrass was distinct from sediment, but classification error arose for sparse seagrass. Three classifiers (linear discriminant analysis, support vector machine and random forest) and three feature selection options (no selection, collinearity reduction and recursive feature elimination) were assessed for effect on classification performance. The random forest classifier yielded the highest classification accuracy, with no accuracy benefit gained from collinearity reduction or recursive feature elimination. Spectral vegetation indices and texture layers substantially improved classification accuracy. Object geometry made a negligible contribution to classification accuracy using mean-shift segmentation at this image-scale. The method achieved classification of seagrass density with up to 84% accuracy on a three-tier end-member class scale (low, medium, and high density) when using training data formed using visual interpretation of ground reference photography, and up to 93% accuracy using precisely measured seagrass leaf-area. Visual interpretation agreed with precisely measured seagrass leaf area 88% of the time with some misattribution at mid-density. Visual interpretation was substantially faster to apply than measuring the leaf area. A decile class scale for seagrass density correlated with actual leaf area measures more than the three-tier scale, however, was less accurate for absolute class attribution. The research demonstrates that seagrass feature extraction from RPA-flown imagery is a feasible and repeatable option for seagrass population monitoring and environmental reporting. Further calibration is required for whole- and multi-estuary application

    Airborne Hyperspectral Imaging of Lakes

    Get PDF
    In a time of rising concern about climate change and pollution, the water quality of large lakes acts as an indicator of the health of the environment. To study the water quality at a large scale - up to several hundreds of kilometres - hyperspectral remote sensing is emerging as the main solution. Indeed, different quantities relevant to water quality, like turbidity or concentratrion in chlorophyll-a, can be measured using the spectral reflectance of the water column. Additionally, airborne and spaceborne sensors can cover large areas, thus allowing to study the water at a much larger scale than when simply taking water samples at specific points. Airborne hyperspectral imaging, in particular, offers an acceptable ground resolution - around a metre - which allows to map relevant quantities precisely. However, few existing projects deliver maps that have both a sufficient ground resolution and a large coverage. Furthermore, most existing sensors do not offer a fine spectral resolution, which is for instance crucial when studying the presence of chlorophyll-a, which can only be detected in a narrow range of the electromagnetic spectrum. This thesis presents our work with a hyperspectral sensor developed and used by the Geodetic Engineering Laboratory of EPFL in the LĂ©man-BaĂŻkal project, a cooperative work which aimed at studying both Lake Geneva (Switzerland) and Lake Baikal (Russia). The project included ultralight plane flights with an onboard pushbroom scanner, which allowed to collect data over large areas with a fine spectral resolution. Alongside the use of this sensor came problematics which are at the centre of this thesis: the georeferencing of the scan lines, their radiometric calibration, their analysis and the softwaremanagement of this data. In the following, we present a new method to georeference pushbroom scan lines that uses co-acquired frame images to perform coregistration and to achieve a georeferencing, which RMSE is up to 20 times smaller than the direct one. We propose an efficient radiometric self-calibration method to convert the sensor output to water-leaving reflectance; this method makes use of the visible peaks of atmospheric absorption to align the spectral bands with those of a reference acquisition, and uses the near infrared properties of deep water and vegetation to performabsolute calibration. The last part of the processing - the software management, including data compression - was solved by developing a software called HYPerspectral Orthorectification Software (HypOS). This software is the synthesis of our work, including the tools to performgeometric correction, radiometric calibration and data compression of our hyperspectral data. Two examples of applications are given: the first one deals with mapping chlorophyll-a in the Rhone Delta of Lake Geneva; the second, at a larger scale, uses satellite data to monitor ice coverage over large lakes like Onega or Ladoga (Russia)

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing
    corecore