495 research outputs found

    Automatic Summarization in Chinese Product Reviews

    Get PDF
    With the increasing number of online comments, it was hard for buyers to find useful information in a short time so it made sense to do research on automatic summarization which fundamental work was focused on product reviews mining. Previous studies mainly focused on explicit features extraction whereas often ignored implicit features which hadn't been stated clearly but containing necessary information for analyzing comments. So how to quickly and accurately mine features from web reviews had important significance for summarization technology. In this paper, explicit features and โ€œfeature-opinionโ€ pairs in the explicit sentences were extracted by Conditional Random Field and implicit product features were recognized by a bipartite graph model based on random walk algorithm. Then incorporating features and corresponding opinions into a structured text and the abstract was generated based on the extraction results. The experiment results demonstrated the proposed methods outpreferred baselines

    ์ธ๊ณต์ง€๋Šฅ๊ณผ ๋Œ€ํ™”ํ•˜๊ธฐ: ์ผ๋Œ€์ผ ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฃน ์ƒ์šฉ์ž‘์šฉ์„ ์œ„ํ•œ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์–ธ๋ก ์ •๋ณดํ•™๊ณผ, 2022.2. ์ด์ค€ํ™˜."์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ"๊ณผ "์‚ฌ์šฉ์ž ๊ฒฝํ—˜"์„ ๋„˜์–ด, "์ธ๊ฐ„-์ธ๊ณต์ง€๋Šฅ ์ƒํ˜ธ์ž‘์šฉ" ๊ทธ๋ฆฌ๊ณ  "์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฒฝํ—˜"์˜ ์‹œ๋Œ€๊ฐ€ ๋„๋ž˜ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ์šฐ๋ฆฌ๊ฐ€ ์˜์‚ฌ์†Œํ†ตํ•˜๊ณ  ํ˜‘์—…ํ•˜๋Š” ๋ฐฉ์‹์˜ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ „ํ™˜ํ–ˆ๋‹ค. ๊ธฐ๊ณ„ ์—์ด์ „ํŠธ๋Š” ์ธ๊ฐ„ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์—์„œ ์ ๊ทน์ ์ด๋ฉฐ ์ฃผ๋„์ ์ธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜๊ณผ ํ† ๋ก  ์‹œ์Šคํ…œ ๋””์ž์ธ์— ๋Œ€ํ•œ ์ดํ•ด์™€ ๋…ผ์˜๋Š” ๋ถ€์กฑํ•œ ๊ฒƒ์ด ์‚ฌ์‹ค์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ์˜ ๊ด€์ ์—์„œ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์  ๋ฐฉ๋ฒ•์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋Š” ์ผ๋Œ€์ผ ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฃน ์ƒํ˜ธ์ž‘์šฉ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๋Š” 1) ์ผ๋Œ€์ผ ์ƒํ˜ธ์ž‘์š”์—์„œ ์‚ฌ์šฉ์ž ๊ด€์—ฌ๋ฅผ ๋†’์ด๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ, 2) ์ผ์ƒ์ ์ธ ์†Œ์…œ ๊ทธ๋ฃน ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ์—์ด์ „ํŠธ, 3) ์ˆ™์˜ ํ† ๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์—์ด์ „ํŠธ๋ฅผ ๋””์ž์ธ ๋ฐ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ทธ ํšจ๊ณผ๋ฅผ ์ •๋Ÿ‰์  ๊ทธ๋ฆฌ๊ณ  ์ •์„ฑ์ ์œผ๋กœ ๊ฒ€์ฆํ–ˆ๋‹ค. ์‹œ์Šคํ…œ์„ ๋””์ž์ธํ•จ์— ์žˆ์–ด์„œ ์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ๋ฟ ์•„๋‹ˆ๋ผ, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ํ•™, ์‹ฌ๋ฆฌํ•™, ๊ทธ๋ฆฌ๊ณ  ๋ฐ์ดํ„ฐ ๊ณผํ•™์„ ์ ‘๋ชฉํ•œ ๋‹คํ•™์ œ์  ์ ‘๊ทผ ๋ฐฉ์‹์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ๋Œ€์ผ ์ƒํ˜ธ์ž‘์šฉ ์ƒํ™ฉ์—์„œ ์‚ฌ์šฉ์ž์˜ ๊ด€์—ฌ ์ฆ์ง„์„ ์œ„ํ•œ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ–ˆ๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ๋ผ๋Š” ๋งฅ๋ฝ์—์„œ ์ˆ˜ํ–‰๋œ ์ด ์—ฐ๊ตฌ๋Š” ์›น ์„ค๋ฌธ์กฐ์‚ฌ์—์„œ ์‘๋‹ต์ž์˜ ๋ถˆ์„ฑ์‹ค๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์‘๋‹ต ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์˜ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ธํ„ฐ๋ž™์…˜ ๋ฐฉ๋ฒ•์œผ๋กœ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 2 (์ธํ„ฐํŽ˜์ด์Šค: ์›น ๅฐ ์ฑ—๋ด‡) X 2 (๋Œ€ํ™” ์Šคํƒ€์ผ: ํฌ๋ฉ€ ๅฐ ์บ์ฅฌ์–ผ) ์‹คํ—˜์„ ์ง„ํ–‰ํ–ˆ์œผ๋ฉฐ, ๋งŒ์กฑํ™” ์ด๋ก ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์‘๋‹ต ๋ฐ์ดํ„ฐ์˜ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ฑ—๋ด‡ ์„ค๋ฌธ์กฐ์‚ฌ์˜ ์ฐธ์—ฌ์ž๊ฐ€ ์›น ์„ค๋ฌธ์กฐ์‚ฌ์˜ ์ฐธ์—ฌ์ž๋ณด๋‹ค ๋” ๋†’์€ ์ˆ˜์ค€์˜ ๊ด€์—ฌ๋ฅผ ๋ณด์ด๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋” ๋†’์€ ํ’ˆ์งˆ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ์ฑ—๋ด‡์˜ ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์— ๋Œ€ํ•œ ํšจ๊ณผ๋Š” ์ฑ—๋ด‡์ด ์นœ๊ตฌ ๊ฐ™๊ณ  ์บ์ฅฌ์–ผํ•œ ๋Œ€ํ™”์ฒด๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋งŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ๋Œ€ํ™”ํ˜• ์ธํ„ฐ๋ž™ํ‹ฐ๋น„ํ‹ฐ๊ฐ€ ์ธํ„ฐํŽ˜์ด์Šค๋ฟ ์•„๋‹ˆ๋ผ ๋Œ€ํ™” ์Šคํƒ€์ผ์ด๋ผ๋Š” ํšจ๊ณผ์ ์ธ ๋ฉ”์„ธ์ง€ ์ „๋žต์„ ๋™๋ฐ˜ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ์ƒ์ ์ธ ์†Œ์…œ ์ฑ„ํŒ… ๊ทธ๋ฃน์—์„œ ์ง‘๋‹จ์˜ ์˜์‚ฌ๊ฒฐ์ •๊ณผ์ •๊ณผ ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด GroupfeedBot์ด๋ผ๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ๋ฅผ ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ, GroupfeedBot์€ (1) ํ† ๋ก  ์‹œ๊ฐ„์„ ๊ด€๋ฆฌํ•˜๊ณ , (2) ๊ตฌ์„ฑ์›๋“ค์˜ ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ•˜๋ฉฐ, (3) ๊ตฌ์„ฑ์›๋“ค์˜ ๋‹ค์–‘ํ•œ ์˜๊ฒฌ์„ ์š”์•ฝ ๋ฐ ์กฐ์งํ™”ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ํ•ด๋‹น ์—์ด์ „ํŠธ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ํƒœ์Šคํฌ (์ถ”๋ก , ์˜์‚ฌ๊ฒฐ์ •, ์ž์œ  ํ† ๋ก , ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ณผ์ œ)์™€ ๊ทธ๋ฃน ๊ทœ๋ชจ(์†Œ๊ทœ๋ชจ, ์ค‘๊ทœ๋ชจ)์— ๊ด€ํ•˜์—ฌ ์‚ฌ์šฉ์ž ์กฐ์‚ฌ๋ฅผ ์‹œํ–‰ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์˜๊ฒฌ์˜ ๋‹ค์–‘์„ฑ ์ธก๋ฉด์—์„œ GroupfeedBot์œผ๋กœ ํ† ๋ก ํ•œ ์ง‘๋‹จ์ด ๊ธฐ๋ณธ ์—์ด์ „ํŠธ์™€ ํ† ๋ก ํ•œ ์ง‘๋‹จ๋ณด๋‹ค ๋” ๋‹ค์–‘ํ•œ ์˜๊ฒฌ์„ ์ƒ์„ฑํ–ˆ์ง€๋งŒ ์‚ฐ์ถœ๋œ ๊ฒฐ๊ณผ์˜ ํ’ˆ์งˆ๊ณผ ๋ฉ”์‹œ์ง€ ์–‘์— ์žˆ์–ด์„œ๋Š” ์ฐจ์ด๊ฐ€ ์—†๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ์— ๋Œ€ํ•œ GroupfeedBot์˜ ํšจ๊ณผ๋Š” ํƒœ์Šคํฌ์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ํŠนํžˆ ์ž์œ  ํ† ๋ก  ๊ณผ์ œ์—์„œ GroupfeedBot์ด ์ฐธ์—ฌ์ž๋“ค์˜ ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ–ˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ˆ™์˜ ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ DebateBot์€ GroupfeeedBot๊ณผ ๋‹ฌ๋ฆฌ ๋” ์ง„์ง€ํ•œ ์‚ฌํšŒ์  ๋งฅ๋ฝ์—์„œ ์ ์šฉ๋˜์—ˆ๋‹ค. DebateBot์€ (1) ์ƒ๊ฐํ•˜๊ธฐ-์ง์ง“๊ธฐ-๊ณต์œ ํ•˜๊ธฐ (Think-Pair-Share) ์ „๋žต์— ๋”ฐ๋ผ ํ† ๋ก ์„ ๊ตฌ์กฐํ™”ํ•˜๊ณ , (2) ๊ณผ๋ฌตํ•œ ํ† ๋ก ์ž์—๊ฒŒ ์˜๊ฒฌ์„ ์š”์ฒญํ•จ์œผ๋กœ์จ ๋™๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ์‚ฌ์šฉ์ž ํ‰๊ฐ€ ๊ฒฐ๊ณผ DebateBot์€ ๊ทธ๋ฃน ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ์‹ฌ์˜ ํ† ๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค. ํ† ๋ก  ๊ตฌ์กฐํ™”๋Š” ํ† ๋ก ์˜ ์งˆ์— ๊ธ์ •์ ์ธ ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜์˜€๊ณ , ์ฐธ์—ฌ์ž ์ด‰์ง„์€ ์ง„์ •ํ•œ ํ•ฉ์˜ ๋„๋‹ฌ์— ๊ธฐ์—ฌํ•˜์˜€์œผ๋ฉฐ, ๊ทธ๋ฃน ๊ตฌ์„ฑ์›๋“ค์˜ ์ฃผ๊ด€์  ๋งŒ์กฑ๋„๋ฅผ ํ–ฅ์ƒํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ์ธ๊ฐ„-์ธ๊ณต์ง€๋Šฅ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์‹œ์‚ฌ์ ๋“ค์„ ๋„์ถœํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ TAMED (Task-Agent-Message-Information Exchange-Relationship Dynamics) ๋ชจ๋ธ๋กœ ์ •๋ฆฌํ•˜์˜€๋‹ค.The advancements in technology shift the paradigm of how individuals communicate and collaborate. Machines play an active role in human communication. However, we still lack a generalized understanding of how exactly to design effective machine-driven communication and discussion systems. How should machine agents be designed differently when interacting with a single user as opposed to when interacting with multiple users? How can machine agents be designed to drive user engagement during dyadic interaction? What roles can machine agents perform for the sake of group interaction contexts? How should technology be implemented in support of the group decision-making process and to promote group dynamics? What are the design and technical issues which should be considered for the sake of creating human-centered interactive systems? In this thesis, I present new interactive systems in the form of a conversational agent, or a chatbot, that facilitate dyadic and group interactions. Specifically, I focus on: 1) a conversational agent to engage users in dyadic communication, 2) a chatbot called GroupfeedBot that facilitates daily social group discussion, 3) a chatbot called DebateBot that enables deliberative discussion. My approach to research is multidisciplinary and informed by not only in HCI, but also communication, psychology and data science. In my work, I conduct in-depth qualitative inquiry and quantitative data analysis towards understanding issues that users have with current systems, before developing new computational techniques that meet those user needs. Finally, I design, build, and deploy systems that use these techniques to the public in order to achieve real-world impact and to study their use by different usage contexts. The findings of this thesis are as follows. For a dyadic interaction, participants interacting with a chatbot system were more engaged as compared to those with a static web system. However, the conversational agent leads to better user engagement only when the messages apply a friendly, human-like conversational style. These results imply that the chatbot interface itself is not quite sufficient for the purpose of conveying conversational interactivity. Messages should also be carefully designed to convey such. Unlike dyadic interactions, which focus on message characteristics, other elements of the interaction should be considered when designing agents for group communication. In terms of messages, it is important to synthesize and organize information given that countless messages are exchanged simultaneously. In terms of relationship dynamics, rather than developing a rapport with a single user, it is essential to understand and facilitate the dynamics of the group as a whole. In terms of task performance, technology should support the group's decision-making process by efficiently managing the task execution process. Considering the above characteristics of group interactions, I created the chatbot agents that facilitate group communication in two different contexts and verified their effectiveness. GroupfeedBot was designed and developed with the aim of enhancing group discussion in social chat groups. GroupfeedBot possesses the feature of (1) managing time, (2) encouraging members to participate evenly, and (3) organizing the membersโ€™ diverse opinions. The group which discussed with GroupfeedBot tended to produce more diverse opinions compared to the group discussed with the basic chatbot. Some effects of GroupfeedBot varied by the task's characteristics. GroupfeedBot encouraged the members to contribute evenly to the discussions, especially for the open-debating task. On the other hand, DebateBot was designed and developed to facilitate deliberative discussion. In contrast to GroupfeedBot, DebateBot was applied to more serious and less casual social contexts. Two main features were implemented in DebateBot: (1) structure discussion and (2) request opinions from reticent discussants.This work found that a chatbot agent which structures discussions and promotes even participation can improve discussions, resulting in higher quality deliberative discussion. Overall, adding structure to the discussion positively influenced the discussion quality, and the facilitation helped groups reach a genuine consensus and improved the subjective satisfaction of the group members. The findings of this thesis reflect the importance of understanding human factors in designing AI-infused systems. By understanding the characteristics of individual humans and collective groups, we are able to place humans at the heart of the system and utilize AI technology in a human-friendly way.1. Introduction 1.1 Background 1.2 Rise of Machine Agency 1.3 Theoretical Framework 1.4 Research Goal 1.5 Research Approach 1.6 Summary of Contributions 1.7 Thesis Overview 2. Related Work 2.1 A Brief History of Conversational Agents 2.2 TAMED Framework 3. Designing Conversational Agents for Dyadic Interaction 3.1 Background 3.2 Related Work 3.3 Method 3.4 Results 3.5 Discussion 3.6 Conclusion 4. Designing Conversational Agents for Social Group Discussion 4.1 Background 4.2 Related Work 4.3 Needfinding Survey for Facilitator Chatbot Agent 4.4 GroupfeedBot: A Chatbot Agent For Facilitating Discussion in Group Chats 4.5 Qualitative Study with Small-Sized Group 4.6 User Study With Medium-Sized Group 4.7 Discussion 4.8 Conclusion 5. Designing Conversational Agents for Deliberative Group Discussion 5.1 Background 5.2 Related Work 5.3 DebateBot 5.4 Method 5.5 Results 5.6 Discussion and Design Implications 5.7 Conclusion 6. Discussion 6.1 Designing Conversational Agents as a Communicator 6.2 Design Guidelines Based on TAMED Model 6.3 Technical Considerations 6.4 Human-AI Collaborative System 7. Conclusion 7.1 Research Summary 7.2 Summary of Contributions 7.3 Future Work 7.4 Conclusion๋ฐ•

    Investigating and extending the methods in automated opinion analysis through improvements in phrase based analysis

    Get PDF
    Opinion analysis is an area of research which deals with the computational treatment of opinion statement and subjectivity in textual data. Opinion analysis has emerged over the past couple of decades as an active area of research, as it provides solutions to the issues raised by information overload. The problem of information overload has emerged with the advancements in communication technologies which gave rise to an exponential growth in user generated subjective data available online. Opinion analysis has a rich set of applications which are used to enable opportunities for organisations such as tracking user opinions about products, social issues in communities through to engagement in political participation etc.The opinion analysis area shows hyperactivity in recent years and research at different levels of granularity has, and is being undertaken. However it is observed that there are limitations in the state-of-the-art, especially as dealing with the level of granularities on their own does not solve current research issues. Therefore a novel sentence level opinion analysis approach utilising clause and phrase level analysis is proposed. This approach uses linguistic and syntactic analysis of sentences to understand the interdependence of words within sentences, and further uses rule based analysis for phrase level analysis to calculate the opinion at each hierarchical structure of a sentence. The proposed opinion analysis approach requires lexical and contextual resources for implementation. In the context of this Thesis the approach is further presented as part of an extended unifying framework for opinion analysis resulting in the design and construction of a novel corpus. The above contributions to the field (approach, framework and corpus) are evaluated within the Thesis and are found to make improvements on existing limitations in the field, particularly with regards to opinion analysis automation. Further work is required in integrating a mechanism for greater word sense disambiguation and in lexical resource development

    Analyzing Cognitive Presence in Online Courses Using an Artificial Neural Network

    Get PDF
    This work outlines the theoretical underpinnings, method, results, and implications for constructing a discussion list analysis tool that categorizes online, educational discussion list messages into levels of cognitive effort. Purpose The purpose of such a tool is to provide evaluative feedback to instructors who facilitate online learning, to researchers studying computer-supported collaborative learning, and to administrators interested in correlating objective measures of studentsโ€™ cognitive effort with other measures of student success. This work connects computerโ€“supported collaborative learning, content analysis, and artificial intelligence. Method Broadly, the method employed is a content analysis in which the data from the analysis is modeled using artificial neural network (ANN) software. A group of human coders categorized online discussion list messages, and inter-rater reliability was calculated among them. That reliability figure serves as a measuring stick for determining how well the ANN categorizes the same messages that the group of human coders categorized. Reliability between the ANN model and the group of human coders is compared to the reliability among the group of human coders to determine how well the ANN performs compared to humans. Findings Two experiments were conducted in which artificial neural network (ANN) models were constructed to model the decisions of human coders, and the experiments revealed that the ANN, under noisy, real-life circumstances codes messages with near-human accuracy. From experiment one, the reliability between the ANN model and the group of human coders, using Cohenโ€™s kappa, is 0.519 while the human reliability values range from 0.494 to 0.742 (M=0.6). Improvements were made to the human content analysis with the goal of improving the reliability among coders. After these improvements were made, the humans coded messages with a kappa agreement ranging from 0.816 to 0.879 (M=0.848), and the kappa agreement between the ANN model and the group of human coders is 0.70

    Autonomous Satellite Command and Control through the World Wide Web: Phase 3

    Get PDF
    NASA's New Millenium Program (NMP) has identified a variety of revolutionary technologies that will support orders of magnitude improvements in the capabilities of spacecraft missions. This program's Autonomy team has focused on science and engineering automation technologies. In doing so, it has established a clear development roadmap specifying the experiments and demonstrations required to mature these technologies. The primary developmental thrusts of this roadmap are in the areas of remote agents, PI/operator interface, planning/scheduling fault management, and smart execution architectures. Phases 1 and 2 of the ASSET Project (previously known as the WebSat project) have focused on establishing World Wide Web-based commanding and telemetry services as an advanced means of interfacing a spacecraft system with the PI and operators. Current automated capabilities include Web-based command submission, limited contact scheduling, command list generation and transfer to the ground station, spacecraft support for demonstrations experiments, data transfer from the ground station back to the ASSET system, data archiving, and Web-based telemetry distribution. Phase 2 was finished in December 1996. During January-December 1997 work was commenced on Phase 3 of the ASSET Project. Phase 3 is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer; (2) Support prioritized handling of multiple PIs as well as associated payload experimenters; (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft; (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware; (5) Implement a beacon monitoring test; (6) Implement an experimental blackboard controller for space system management; (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals is examined in the next section. Significant sections of this report were also published as a conference paper

    FCSIT Research Bulletin 2016

    Get PDF
    The FCSIT Research Bulletin is an annual publication of the Faculty of Computer Science and Information Technology, UNIMAS. The purpose of FCSIT Research Bulletin is to disseminate information that represent the current state of the research activities, publications, research findings, training, conferences and seminar conducted by the academicians in the faculty

    SID 04, Social Intelligence Design:Proceedings Third Workshop on Social Intelligence Design

    Get PDF

    Proceedings of the ECIR2010 workshop on information access for personal media archives (IAPMA2010), Milton Keynes, UK, 28 March 2010

    Get PDF
    Towards e-Memories: challenges of capturing, summarising, presenting, understanding, using, and retrieving relevant information from heterogeneous data contained in personal media archives. This is the proceedings of the inaugural workshop on โ€œInformation Access for Personal Media Archivesโ€. It is now possible to archive much of our life experiences in digital form using a variety of sources, e.g. blogs written, tweets made, social network status updates, photographs taken, videos seen, music heard, physiological monitoring, locations visited and environmentally sensed data of those places, details of people met, etc. Information can be captured from a myriad of personal information devices including desktop computers, PDAs, digital cameras, video and audio recorders, and various sensors, including GPS, Bluetooth, and biometric devices. In this workshop research from diverse disciplines was presented on how we can advance towards the goal of effective capture, retrieval and exploration of e-memories
    • โ€ฆ
    corecore