5,375 research outputs found

    Bifurcations and synchronization using an integrated programmable chaotic circuit

    Get PDF
    This paper presents a CMOS chip which can act as an autonomous stand-alone unit to generate different real-time chaotic behaviors by changing a few external bias currents. In particular, by changing one of these bias currents, the chip provides different examples of a period-doubling route to chaos. We present experimental orbits and attractors, time waveforms and power spectra measured from the chip. By using two chip units, experiments on synchronization can be carried out as well in real-time. Measurements are presented for the following synchronization schemes: linear coupling, drive-response and inverse system. Experimental statistical characterizations associated to these schemes are also presented. We also outline the possible use of the chip for chaotic encryption of audio signals. Finally, for completeness, the paper includes also a brief description of the chip design procedure and its internal circuitry

    On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    Get PDF
    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.Ministerio de Educación y Ciencia TEC2004-0175

    Smart-Pixel Cellular Neural Networks in Analog Current-Mode CMOS Technology

    Get PDF
    This paper presents a systematic approach to design CMOS chips with concurrent picture acquisition and processing capabilities. These chips consist of regular arrangements of elementary units, called smart pixels. Light detection is made with vertical CMOS-BJT’s connected in a Darlington structure. Pixel smartness is achieved by exploiting the Cellular Neural Network paradigm [1], [2], incorporating at each pixel location an analog computing cell which interacts with those of nearby pixels. We propose a current-mode implementation technique and give measurements from two 16 x 16 prototypes in a single-poly double-metal CMOS n-well 1.6-µm technology. In addition to the sensory and processing circuitry, both chips incorporate light-adaptation circuitry for automatic contrast adjustment. They obtain smart-pixel densities up to 89 units/mm2, with a power consumption down to 105 µW/unit and image processing times below 2 µs

    Locally-Stable Macromodels of Integrated Digital Devices for Multimedia Applications

    Get PDF
    This paper addresses the development of accurate and efficient behavioral models of digital integrated circuits for the assessment of high-speed systems. Device models are based on suitable parametric expressions estimated from port transient responses and are effective at system level, where the quality of functional signals and the impact of supply noise need to be simulated. A potential limitation of some state-of-the-art modeling techniques resides in hidden instabilities manifesting themselves in the use of models, without being evident in the building phase of the same models. This contribution compares three recently-proposed model structures, and selects the local-linear state-space modeling technique as an optimal candidate for the signal integrity assessment of data links. In fact, this technique combines a simple verification of the local stability of models with a limited model size and an easy implementation in commercial simulation tools. An application of the proposed methodology to a real problem involving commercial devices and a data-link of a wireless device demonstrates the validity of this approac

    ポータビリティを意識したCMOSミックスドシグナルVLSI回路設計手法に関する研究

    Get PDF
    本研究は、半導体上に集積されたアナログ・ディジタル・メモリ回路から構成されるミクストシグナルシステムを別の製造プロセスへ移行することをポーティングとして定義し、効率的なポーティングを行うための設計方式と自動回路合成アルゴリズムを提案し、いくつかの典型的な回路に対する設計事例を示し、提案手法の妥当性を立証している。北九州市立大

    Reconfigurable nanoelectronics using graphene based spintronic logic gates

    Full text link
    This paper presents a novel design concept for spintronic nanoelectronics that emphasizes a seamless integration of spin-based memory and logic circuits. The building blocks are magneto-logic gates based on a hybrid graphene/ferromagnet material system. We use network search engines as a technology demonstration vehicle and present a spin-based circuit design with smaller area, faster speed, and lower energy consumption than the state-of-the-art CMOS counterparts. This design can also be applied in applications such as data compression, coding and image recognition. In the proposed scheme, over 100 spin-based logic operations are carried out before any need for a spin-charge conversion. Consequently, supporting CMOS electronics requires little power consumption. The spintronic-CMOS integrated system can be implemented on a single 3-D chip. These nonvolatile logic circuits hold potential for a paradigm shift in computing applications.Comment: 14 pages (single column), 6 figure

    Optimization of ring oscillators

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresVoltage Controlled Oscillators (VCOs) are from all the building blocks of a PLL, those whose implementation is more critical, since the quality of the signal depends on its performance. The VCOs can be implemented based on LC oscillators or ring oscillators. The ring oscillators, despite of being worst when it comes to manners of phase noise, they are rather used due to lower power consumption, wider tuning range and occupying less area. Despite the fact that VCOs are widely used in last years, their designed is still a problem hard to deal with, since the ring oscillators circuits must satisfy some specifications such as area, power, speed and noise. The work proposed in this thesis aims at the development of an environment for automatic scaling of voltage-controlled oscillators with ring topology. In this work it was considered a design methodology based optimization using an analytical model of the oscillator. The oscillator model is based on the EKV model for the characterization of the transistors so as to ensure its applicability to submicron dimensions technologies. The work took place according to the following phases: - Study of ring oscillators and models proposed in the literature - Evaluation of the limitations of existing models and proposed use of EKV model. - Automatic determination of the parameters of the EKV model for UMC130 technology - Development of an analytic model for characterizing the VCO with predefined delay cell. - Use of optimization techniques for automatic sizing of the VCO

    Geometrically-constrained, parasitic-aware synthesis of analog ICs

    Get PDF
    In order to speed up the design process of analog ICs, iterations between different design stages should be avoided as much as possible. More specifically, spins between electrical and physical synthesis should be reduced for this is a very time-consuming task: if circuit performance including layout-induced degradations proves unacceptable, a re-design cycle must be entered, and electrical, physical, or both synthesis processes, would have to be repeated. It is also worth noting that if geometric optimization (e.g., area minimization) is undertaken after electrical synthesis, it may add up as another source of unexpected degradation of the circuit performance due to the impact of the geometric variables (e.g., transistor folds) on the device and the routing parasitic values. This awkward scenario is caused by the complete separation of said electrical and physical synthesis, a design practice commonly followed so far. Parasitic-aware synthesis, consisting in including parasitic estimates to the circuit netlist directly during electrical synthesis, has been proposed as solution. While most of the reported contributions either tackle parasitic-aware synthesis without paying special attention to geometric optimization or approach both issues only partially, this paper addresses the problem in a unified way. In what has been called layout-aware electrical synthesis, a simulation-based optimization algorithm explores the design space with geometric variables constrained to meet certain user-defined goals, which provides reliable estimates of layout-induced parasitics at each iteration, and, thereby, accurate evaluation of the circuit ultimate performance. This technique, demonstrated here through several design examples, requires knowing layout details beforehand; to facilitate this, procedural layout generation is used as physical synthesis approach due to its rapidness and ability to capture analog layout know-how.Ministerio de Educación y Ciencia TEC2004-0175

    Mixed-signal CNN array chips for image processing

    Get PDF
    Due to their local connectivity and wide functional capabilities, cellular nonlinear networks (CNN) are excellent candidates for the implementation of image processing algorithms using VLSI analog parallel arrays. However, the design of general purpose, programmable CNN chips with dimensions required for practical applications raises many challenging problems to analog designers. This is basically due to the fact that large silicon area means large development cost, large spatial deviations of design parameters and low production yield. CNN designers must face different issues to keep reasonable enough accuracy level and production yield together with reasonably low development cost in their design of large CNN chips. This paper outlines some of these major issues and their solutions
    corecore