5,985 research outputs found

    Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review

    Full text link
    In this paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 98% were articles with at least 482 citations published in 903 journals during the past 30 years. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent

    Image classification over unknown and anomalous domains

    Get PDF
    A longstanding goal in computer vision research is to develop methods that are simultaneously applicable to a broad range of prediction problems. In contrast to this, models often perform best when they are specialized to some task or data type. This thesis investigates the challenges of learning models that generalize well over multiple unknown or anomalous modes and domains in data, and presents new solutions for learning robustly in this setting. Initial investigations focus on normalization for distributions that contain multiple sources (e.g. images in different styles like cartoons or photos). Experiments demonstrate the extent to which existing modules, batch normalization in particular, struggle with such heterogeneous data, and a new solution is proposed that can better handle data from multiple visual modes, using differing sample statistics for each. While ideas to counter the overspecialization of models have been formulated in sub-disciplines of transfer learning, e.g. multi-domain and multi-task learning, these usually rely on the existence of meta information, such as task or domain labels. Relaxing this assumption gives rise to a new transfer learning setting, called latent domain learning in this thesis, in which training and inference are carried out over data from multiple visual domains, without domain-level annotations. Customized solutions are required for this, as the performance of standard models degrades: a new data augmentation technique that interpolates between latent domains in an unsupervised way is presented, alongside a dedicated module that sparsely accounts for hidden domains in data, without requiring domain labels to do so. In addition, the thesis studies the problem of classifying previously unseen or anomalous modes in data, a fundamental problem in one-class learning, and anomaly detection in particular. While recent ideas have been focused on developing self-supervised solutions for the one-class setting, in this thesis new methods based on transfer learning are formulated. Extensive experimental evidence demonstrates that a transfer-based perspective benefits new problems that have recently been proposed in anomaly detection literature, in particular challenging semantic detection tasks

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri

    Compatibility and challenges in machine learning approach for structural crack assessment

    Get PDF
    Structural health monitoring and assessment (SHMA) is exceptionally essential for preserving and sustaining any mechanical structure’s service life. A successful assessment should provide reliable and resolute information to maintain the continuous performance of the structure. This information can effectively determine crack progression and its overall impact on the structural operation. However, the available sensing techniques and methods for performing SHMA generate raw measurements that require significant data processing before making any valuable predictions. Machine learning (ML) algorithms (supervised and unsupervised learning) have been extensively used for such data processing. These algorithms extract damage-sensitive features from the raw data to identify structural conditions and performance. As per the available published literature, the extraction of these features has been quite random and used by academic researchers without a suitability justification. In this paper, a comprehensive literature review is performed to emphasise the influence of damage-sensitive features on ML algorithms. The selection and suitability of these features are critically reviewed while processing raw data obtained from different materials (metals, composites and polymers). It has been found that an accurate crack prediction is only possible if the selection of damage-sensitive features and ML algorithms is performed based on available raw data and structure material type. This paper also highlights the current challenges and limitations during the mentioned sections

    The Adirondack Chronology

    Get PDF
    The Adirondack Chronology is intended to be a useful resource for researchers and others interested in the Adirondacks and Adirondack history.https://digitalworks.union.edu/arlpublications/1000/thumbnail.jp

    SSA-SiamNet:Spectral-Spatial-Wise Attention-Based Siamese Network for Hyperspectral Image Change Detection

    Get PDF
    Deep learning methods, especially convolutional neural network (CNN)-based methods, have shown promising performance for hyperspectral image (HSI) change detection (CD). It is acknowledged widely that different spectral channels and spatial locations in input image patches may contribute differently to CD. However, they are treated equally in existing CNN-based approaches. To increase the accuracy of HSI CD, we propose an end-to-end Siamese CNN (SiamNet) with a spectral-spatial-wise attention (SSA-SiamNet) mechanism. The proposed SSA-SiamNet method can emphasize informative channels and locations and suppress less informative ones to refine the spectral-spatial features adaptively. Moreover, in the network training phase, the weighted contrastive loss function is used for more reliable separation of changed and unchanged pixels and to accelerate the convergence of the network. SSA-SiamNet was validated using four groups of bitemporal HSIs. The accuracy of CD using the SSA-SiamNet was found to be consistently greater than for ten benchmark methods

    Foundations for programming and implementing effect handlers

    Get PDF
    First-class control operators provide programmers with an expressive and efficient means for manipulating control through reification of the current control state as a first-class object, enabling programmers to implement their own computational effects and control idioms as shareable libraries. Effect handlers provide a particularly structured approach to programming with first-class control by naming control reifying operations and separating from their handling. This thesis is composed of three strands of work in which I develop operational foundations for programming and implementing effect handlers as well as exploring the expressive power of effect handlers. The first strand develops a fine-grain call-by-value core calculus of a statically typed programming language with a structural notion of effect types, as opposed to the nominal notion of effect types that dominates the literature. With the structural approach, effects need not be declared before use. The usual safety properties of statically typed programming are retained by making crucial use of row polymorphism to build and track effect signatures. The calculus features three forms of handlers: deep, shallow, and parameterised. They each offer a different approach to manipulate the control state of programs. Traditional deep handlers are defined by folds over computation trees, and are the original con-struct proposed by Plotkin and Pretnar. Shallow handlers are defined by case splits (rather than folds) over computation trees. Parameterised handlers are deep handlers extended with a state value that is threaded through the folds over computation trees. To demonstrate the usefulness of effects and handlers as a practical programming abstraction I implement the essence of a small UNIX-style operating system complete with multi-user environment, time-sharing, and file I/O. The second strand studies continuation passing style (CPS) and abstract machine semantics, which are foundational techniques that admit a unified basis for implementing deep, shallow, and parameterised effect handlers in the same environment. The CPS translation is obtained through a series of refinements of a basic first-order CPS translation for a fine-grain call-by-value language into an untyped language. Each refinement moves toward a more intensional representation of continuations eventually arriving at the notion of generalised continuation, which admit simultaneous support for deep, shallow, and parameterised handlers. The initial refinement adds support for deep handlers by representing stacks of continuations and handlers as a curried sequence of arguments. The image of the resulting translation is not properly tail-recursive, meaning some function application terms do not appear in tail position. To rectify this the CPS translation is refined once more to obtain an uncurried representation of stacks of continuations and handlers. Finally, the translation is made higher-order in order to contract administrative redexes at translation time. The generalised continuation representation is used to construct an abstract machine that provide simultaneous support for deep, shallow, and parameterised effect handlers. kinds of effect handlers. The third strand explores the expressiveness of effect handlers. First, I show that deep, shallow, and parameterised notions of handlers are interdefinable by way of typed macro-expressiveness, which provides a syntactic notion of expressiveness that affirms the existence of encodings between handlers, but it provides no information about the computational content of the encodings. Second, using the semantic notion of expressiveness I show that for a class of programs a programming language with first-class control (e.g. effect handlers) admits asymptotically faster implementations than possible in a language without first-class control

    The Neural Mechanisms of Value Construction

    Get PDF
    Research in decision neuroscience has characterized how the brain makes decisions by assessing the expected utility of each option in an abstract value space that affords the ability to compare dissimilar options. Experiments at multiple levels of analysis in multiple species have localized the ventromedial prefrontal cortex (vmPFC) and nearby orbitofrontal cortex (OFC) as the main nexus where this abstract value space is represented. However, much less is known about how this value code is constructed by the brain in the first place. By using a combination of behavioral modeling and cutting edge tools to analyze functional magnetic resonance imaging (fMRI) data, the work of this thesis proposes that the brain decomposes stimuli into their constituent attributes and integrates across them to construct value. These stimulus features embody appetitive or aversive properties that are either learned from experience or evaluated online by comparing them to previously experienced stimuli with similar features. Stimulus features are processed by cortical areas specialized for the perception of a particular stimulus type and then integrated into a value signal in vmPFC/OFC. The project presented in Chapter 2 examines how food items are evaluated by their constituent attributes, namely their nutrient makeup. A linear attribute integration model succinctly captures how subjective values can be computed from a weighted combination of the constituent nutritive attributes of the food. Multivariate analysis methods revealed that these nutrient attributes are represented in the lateral OFC, while food value is encoded both in medial and lateral OFC. Connectivity between lateral and medial OFC allows this nutrient attribute information to be integrated into a value representation in medial OFC. In Chapter 3, I show that this value construction process can operate over higher-level abstractions when the context requires bundles of items to be valued, rather than isolated items. When valuing bundles of items, the constituent items themselves become the features, and their values are integrated with a subadditive function to construct the value of the bundle. Multiple subregions of PFC including but not limited to vmPFC compute the value of a bundle with the same value code used to evaluate individual items, suggesting that these general value regions contextually adapt within this hierarchy. When valuing bundles and single items in interleaved trials, the value code rapidly switches between levels in this hierarchy by normalizing to the distribution of values in the current context rather than representing all options on an absolute scale. Although the attribute integration model of value construction characterizes human behavior on simple decision-making tasks, it is unclear how it can scale up to environments of real-world complexity. Taking inspiration from modern advances in artificial intelligence, and deep reinforcement learning in particular, in Chapter 4 I outline how connectionist models generalize the attribute integration model to naturalistic tasks by decomposing sensory input into a high dimensional set of nonlinear features that are encoded with hierarchical and distributed processing. Participants freely played Atari video games during fMRI scanning, and a deep reinforcement learning algorithm trained on the games was used as an end-to-end model for how humans evaluate actions in these high-dimensional tasks. The features represented in the intermediate layers of the artificial neural network were found to also be encoded in a distributed fashion throughout the cortex, specifically in the dorsal visual stream and posterior parietal cortex. These features emerge from nonlinear transformations of the sensory input that connect perception to action and reward. In contrast to the stimulus attributes used to evaluate the stimuli presented in the preceding chapters, these features become highly complex and inscrutable as they are driven by the statistical properties of high-dimensional data. However, they do not solely reflect a set of features that can be identified by applying common dimensionality reduction techniques to the input, as task-irrelevant sensory features are stripped away and task-relevant high-level features are magnified.</p

    Studies of strategic performance management for classical organizations theory & practice

    Get PDF
    Nowadays, the activities of "Performance Management" have spread very broadly in actually every part of business and management. There are numerous practitioners and researchers from very different disciplines, who are involved in exploring the different contents of performance management. In this thesis, some relevant historic developments in performance management are first reviewed. This includes various theories and frameworks of performance management. Then several management science techniques are developed for assessing performance management, including new methods in Data Envelopment Analysis (DEA) and Soft System Methodology (SSM). A theoretical framework for performance management and its practical procedures (five phases) are developed for "classic" organizations using soft system thinking, and the relationship with the existing theories are explored. Eventually these results are applied in three case studies to verify our theoretical development. One of the main contributions of this work is to point out, and to systematically explore the basic idea that the effective forms and structures of performance management for an organization are likely to depend greatly on the organizational configuration, in order to coordinate well with other management activities in the organization, which has seemingly been neglected in the existing literature of performance management research in the sense that there exists little known research that associated particular forms of performance management with the explicit assumptions of organizational configuration. By applying SSM, this thesis logically derives some main functional blocks of performance management in 'classic' organizations and clarifies the relationships between performance management and other management activities. Furthermore, it develops some new tools and procedures, which can hierarchically decompose organizational strategies and produce a practical model of specific implementation steps for "classic" organizations. Our approach integrates popular types of performance management models. Last but not least, this thesis presents findings from three major cases, which are quite different organizations in terms of management styles, ownership, and operating environment, to illustrate the fliexbility of the developed theoretical framework
    • …
    corecore