70,317 research outputs found

    Web Services: A Process Algebra Approach

    Full text link
    It is now well-admitted that formal methods are helpful for many issues raised in the Web service area. In this paper we present a framework for the design and verification of WSs using process algebras and their tools. We define a two-way mapping between abstract specifications written using these calculi and executable Web services written in BPEL4WS. Several choices are available: design and correct errors in BPEL4WS, using process algebra verification tools, or design and correct in process algebra and automatically obtaining the corresponding BPEL4WS code. The approaches can be combined. Process algebra are not useful only for temporal logic verification: we remark the use of simulation/bisimulation both for verification and for the hierarchical refinement design method. It is worth noting that our approach allows the use of any process algebra depending on the needs of the user at different levels (expressiveness, existence of reasoning tools, user expertise)

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Supervisory Control for Behavior Composition

    Full text link
    We relate behavior composition, a synthesis task studied in AI, to supervisory control theory from the discrete event systems field. In particular, we show that realizing (i.e., implementing) a target behavior module (e.g., a house surveillance system) by suitably coordinating a collection of available behaviors (e.g., automatic blinds, doors, lights, cameras, etc.) amounts to imposing a supervisor onto a special discrete event system. Such a link allows us to leverage on the solid foundations and extensive work on discrete event systems, including borrowing tools and ideas from that field. As evidence of that we show how simple it is to introduce preferences in the mapped framework

    Towards a service-oriented e-infrastructure for multidisciplinary environmental research

    Get PDF
    Research e-infrastructures are considered to have generic and thematic parts. The generic part provids high-speed networks, grid (large-scale distributed computing) and database systems (digital repositories and data transfer systems) applicable to all research commnities irrespective of discipline. Thematic parts are specific deployments of e-infrastructures to support diverse virtual research communities. The needs of a virtual community of multidisciplinary envronmental researchers are yet to be investigated. We envisage and argue for an e-infrastructure that will enable environmental researchers to develop environmental models and software entirely out of existing components through loose coupling of diverse digital resources based on the service-oriented achitecture. We discuss four specific aspects for consideration for a future e-infrastructure: 1) provision of digital resources (data, models & tools) as web services, 2) dealing with stateless and non-transactional nature of web services using workflow management systems, 3) enabling web servce discovery, composition and orchestration through semantic registries, and 4) creating synergy with existing grid infrastructures

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Complex railway systems: capacity and utilisation of interconnected networks

    Get PDF
    Introduction Worldwide the transport sector faces several issues related to the rising of traffic demand such as congestion, energy consumption, noise, pollution, safety, etc. Trying to stem the problem, the European Commission is encouraging a modal shift towards railway, considered as one of the key factors for the development of a more sustainable European transport system. The coveted increase in railway share of transport demand for the next decades and the attempt to open up the rail market (for freight, international and recently also local services) strengthen the attention to capacity usage of the system. This contribution proposes a synthetic methodology for the capacity and utilisation analysis of complex interconnected rail networks; the procedure has a dual scope since it allows both a theoretically robust examination of suburban rail systems and a solid approach to be applied, with few additional and consistent assumptions, for feasibility or strategic analysis of wide networks (by efficiently exploiting the use of Big Data and/or available Open Databases). Method In particular the approach proposes a schematization of typical elements of a rail network (stations and line segments) to be applied in case of lack of more detailed data; in the authors’ opinion the strength points of the presented procedure stem from the flexibility of the applied synthetic methods and from the joint analysis of nodes and lines. The article, after building a quasiautomatic model to carry out several analyses by changing the border conditions or assumptions, even presents some general abacuses showing the variability of capacity/utilization of the network’s elements in function of basic parameters. Results This has helped in both the presented case studies: one focuses on a detailed analysis of the Naples’ suburban node, while the other tries to broaden the horizon by examining the whole European rail network with a more specific zoom on the Belgium area. The first application shows how the procedure can be applied in case of availability of fine-grained data and for metropolitan/regional analysis, allowing a precise detection of possible bottlenecks in the system and the individuation of possible interventions to relieve the high usage rate of these elements. The second application represents an on-going attempt to provide a broad analysis of capacity and related parameters for the entire European railway system. It explores the potentiality of the approach and the possible exploitation of different ‘Open and Big Data’ sources, but the outcomes underline the necessity to rely on proper and adequate information; the accuracy of the results significantly depend on the design and precision of the input database. Conclusion In conclusion, the proposed methodology aims to evaluate capacity and utilisation rates of rail systems at different geographical scales and according to data availability; the outcomes might provide valuable information to allow efficient exploitation and deployment of railway infrastructure, better supporting policy (e.g. investment prioritization, rail infrastructure access charges) and helping to minimize costs for users.The presented case studies show that the method allows indicative evaluations on the use of the system and comparative analysis between different elementary components, providing a first identification of ‘weak’ links or nodes for which, then, specific and detailed analyses should be carried out, taking into account more in depth their actual configuration, the technical characteristics and the real composition of the traffic (i.e. other elements influencing the rail capacity, such as: the adopted operating systems, the station traffic/route control & safety system, the elastic release of routes, the overlap of block sections, etc.)

    Dynamic state reconciliation and model-based fault detection for chemical processes

    Get PDF
    In this paper, we present a method for the fault detection based on the residual generation. The main idea is to reconstruct the outputs of the system from the measurements using the extended Kalman filter. The estimations are compared to the values of the reference model and so, deviations are interpreted as possible faults. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. The use of this method is illustrated through an application in the field of chemical processe
    • …
    corecore