202 research outputs found

    Speech-to-speech translation to support medical interviews

    Get PDF
    Projeto de mestrado em Engenharia Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2013Este relatório apresenta a criação de um sistema de tradução fala-para-fala. O sistema consiste na captação de voz na forma de sinal áudio que de seguida é interpretado, traduzido e sintetizado para voz. Tendo como entrada um enunciado numa linguagem de origem e como saída um enunciado numa linguagem destino. O sistema implementado tem como âmbito do seu funcionamento o domínio médico, tendo em vista apoiar o diálogo entre médico e utente em linguagens diferentes durante consultas médicas. No caso do presente trabalho, foram escolhidos o português e inglês, sendo possível a tradução fala-para-fala nos dois sentidos. A escolha destas duas línguas resulta sobretudo da disponibilidade de recursos para o desenvolvimento do sistema. Ao longo dos anos tem existido um esforço de pesquisa e desenvolvimento em tecnologia que permite quebrar as barreiras do multilinguismo. Uma dessas tecnologias, com resultados de qualidade crescentemente aceitável, são os sistemas de tradução fala-para-fala. Em geral, estes sistemas são compostos por três componentes: reconhecimento de fala, tradução automática e sintetização de voz. Neste projecto foram implementadas as três componentes. No entanto, uma vez que face às tecnologias disponíveis, a componente de tradução tem um maior impacto no desempenho final do sistema, a esta foi conferida uma maior atenção. Embora nós, como humanos, compreendamos facilmente a linguagem falada, isto é algo extremamente difícil e complexo de um ponto de vista computacional. O objectivo do reconhecimento de fala é abordar esta tarefa computacionalmente através da construção de sistemas que mapeiam um sinal acústico para uma sequência de caracteres. Os modelos actuais para reconhecimento de fala fazem uso de modelos estatísticos. Nestes, a fala é reconhecida através do uso de modelos de linguagem que possibilitam a estimativa das probabilidades para as palavras, independentemente do sinal de entrada, e de um modelo acústico onde as propriedades acústicas da fala estão contempladas. Os modelos actuais de tradução automática, assim como os de reconhecimento de fala, são na sua larga maioria estatísticos. Actualmente os modelos de tradução baseados em unidades frásicas de input são os que obtém os resultados com melhor qualidade. Esta abordagem consiste na tradução de pequenos segmentos de palavras, onde existe uma tradução lexical e um modelo de alinhamento. Os modelos estatísticos fazem uso de textos de duas línguas alinhados, tendo como princípio o facto de que através da frequência de cada segmento de palavras, em relação à outra linguagem, seja obtida uma distribuição probabilística. Deste modo torna-se possível calcular qual a palavra ou conjunto de palavras mais prováveis de ocorrer como tradução para determinado texto que se pretenda traduzir. A sintetização de voz consiste na geração de fala na forma de onda acústica tendo como ponto de partida uma palavra ou uma sequência de palavras. Envolve o processamento de linguagens naturais e processamento de sinal. O primeiro converte o texto numa representação fonética e o último converte essa representação em sinal acústico. Neste documento é apresentado o estado da arte das três áreas envolvidas. São também apresentados os sistemas de tradução fala-para-fala, fazendo ou não uso do domínio médico, e também os processos existentes para a avaliação de cada uma das componentes. Tendo em vista a implementação de um sistema com as diversas componentes, foi necessário efectuar um levantamento da tecnologia existente. O levantamento teve por objectivo a implementação de duas soluções aplicacionais. Uma aplicação disponível pela internet como página web e outra através de uma aplicação móvel, ambas permitindo o reconhecimento de fala, tradução automática e sintetização de voz em ambas as linguagens e direcções. Dois sistemas de reconhecimento de fala foram escolhidos, o Microsoft Speech Platform para a aplicação móvel e o reconhecimento de fala disponível pelo Google nos browsers Google Chrome. O primeiro a ser usado na aplicação móvel e o segundo na aplicação web. O sistema de tradução automática escolhido foi o Moses. Sendo um sistema de tradução estatístico que permite a criação de modelos de tradução diversos, como os modelos baseados em frase e os modelos baseados em fatores. O sistema de sintetização de voz escolhido foi o Microsoft Speech Platform. A aplicação móvel foi desenvolvida para a plataforma iOS da Apple tendo em vista o uso de um telemóvel iPhone. A integração dos componentes pelas diversas arquitecturas foi assegurada pela implementação de web services. O reconhecimento de fala na aplicação web foi desenvolvido recorrendo ao uso da W3C Speech Input API Specifications, onde a programação através de HTML permite a captação de áudio no Google Chrome. Para a implementação do sistema tradução fala-para-fala foi necessário a obtenção de corpora paralelos de forma a se poder treinar os modelos estatísticos, sendo este um dos factores cruciais para o bom desempenho dos componentes. Uma vez que o sistema tem como domínio de aplicação o diálogo médico, corpora neste domínio seria o mais vantajoso. No entanto, a inexistência de tais corpora para o par Inglês-Português levou à aquisição de corpora alternativos. Através de uma experiência exploratória foi abordado o tipo de implementação mais adequado da componente de reconhecimento de fala, tendo como foco o modelo de linguagem. Três experiências foram então conduzidas de forma a decidir entre a aplicação de um modelo de linguagem baseado em regras ou um modelo estatístico. Para implementar um modelo de linguagem baseado em regras foi necessário a criação de um corpus médico que reflectisse um diálogo entre médico e paciente. Para tal, com a ajuda de um médico, criei um diálogo de um caso hipotético de lesão num braço devido a um acidente de carro. Este diálogo teve como base para a sua estruturação a aplicação do processo de anamnesis. A anamnesis consiste numa metodologia médica que através de um conjunto de perguntas chave permite adquirir a informação necessária para a formulação de um diagnóstico médico e decisão sobre o tratamento necessário. O corpus médico foi também transformado num corpus de fala de forma a este ser avaliado ao longo das experiências. Numa primeira experiência foi criada uma gramática básica cuja implementação foi obtida recorrendo à Speech Recognition Grammar Specification de forma a ser usada como modelo de linguagem pela componente de reconhecimento de fala. A segunda experiência tinha como objectivo a criação de uma gramática mais complexa que a primeira. Para tal foi criada uma gramática livre de contexto. Após a criação da gramática livre de contexto esta foi convertida manualmente para uma gramática SRGS. Na terceira experiência foram criados dois modelo de linguagem estatísticos, o primeiro fazendo uso do mesmo corpus que o usado nas experiências anteriores e o segundo composto por 30.000 frases independentes. Obteve-se melhores resultados com o modelo de linguagem estatístico e este ficou como a escolha para a implementação do componente de reconhecimento de fala. No treino da componente de tradução automática foram usados dois modelos estatísticos, baseados em frases e em factores. Pretendeu-se comparar os resultados entre os dois modelos de forma a escolher o modelo mais vantajoso. Para fazer uso do modelo baseado em factores foi necessária a preparação de corpora. Com os corpora já adquiridos foi concretizada a sua anotação para ambas as linguagens. Recorrendo ao LX-Suite e ao CoreNLP, foram criados corpora anotados com lemmas e informação morfossintáctica, com a primeira ferramenta para o português e a última para o inglês. Uma vez que a componente de sintetização de voz permitia uma implementação célere, esta foi implementada recorrendo aos modelos já existentes para ambas as linguagens e disponibilizados pela ferramenta. Por fim, são apresentados os resultados obtidos e a sua avaliação. Tanto a avaliação do sistema de reconhecimento de fala como o de tradução automática demonstraram um desempenho muito competitivo, do nível do estado da arte. A componente de reconhecimento de fala, assim como a componente de tradução automática, obtiveram melhores resultados fazendo-se uso de modelos de linguagem estatístico.This report presents the development of a speech-to-speech translation system. The system consists in the capture of voice as an audio signal that is then interpreted, translated and synthesized to voice for a target language. The three main components of the system, speech recognition, machine translation and speech synthesis, make use of statistical models, such as hidden Markov models. Given the technology available, the machine translation component has a greater impact on the performance of the system, a greater attention has thus been given to it. The system assumes the support to medical interviews between doctor and patient in different languages as its applicational domain. Two application solutions were developed: an online service on a website and a mobile application. This report begins by presenting the general concepts of the relevant areas involved. It proceeds with an overview of the state of the art relating to each area as well as to the methods used for the evaluation of the different components. It provides also an overview of existing technology and the criteria for choosing the tools to be used in the development of the system. It explains the acquisition and creation of the corpora used, and the process of development and integration of the components: speech recognition, machine translation and text-to-speech. Finally, the evaluation results are presented, as well as the final conclusions

    Statistical parametric speech synthesis using conversational data and phenomena

    Get PDF
    Statistical parametric text-to-speech synthesis currently relies on predefined and highly controlled prompts read in a “neutral” voice. This thesis presents work on utilising recordings of free conversation for the purpose of filled pause synthesis and as an inspiration for improved general modelling of speech for text-to-speech synthesis purposes. A corpus of both standard prompts and free conversation is presented and the potential usefulness of conversational speech as the basis for text-to-speech voices is validated. Additionally, through psycholinguistic experimentation it is shown that filled pauses can have potential subconscious benefits to the listener but that current text-to-speech voices cannot replicate these effects. A method for pronunciation variant forced alignment is presented in order to obtain a more accurate automatic speech segmentation something which is particularly bad for spontaneously produced speech. This pronunciation variant alignment is utilised not only to create a more accurate underlying acoustic model, but also as the driving force behind creating more natural pronunciation prediction at synthesis time. While this improves both the standard and spontaneous voices the naturalness of spontaneous speech based voices still lags behind the quality of voices based on standard read prompts. Thus, the synthesis of filled pauses is investigated in relation to specific phonetic modelling of filled pauses and through techniques for the mixing of standard prompts with spontaneous utterances in order to retain the higher quality of standard speech based voices while still utilising the spontaneous speech for filled pause modelling. A method for predicting where to insert filled pauses in the speech stream is also developed and presented, relying on an analysis of human filled pause usage and a mix of language modelling methods. The method achieves an insertion accuracy in close agreement with human usage. The various approaches are evaluated and their improvements documented throughout the thesis, however, at the end the resulting filled pause quality is assessed through a repetition of the psycholinguistic experiments and an evaluation of the compilation of all developed methods

    Modelo acústico de língua inglesa falada por portugueses

    Get PDF
    Trabalho de projecto de mestrado em Engenharia Informática, apresentado à Universidade de Lisboa, através da Faculdade de Ciências, 2007No contexto do reconhecimento robusto de fala baseado em modelos de Markov não observáveis (do inglês Hidden Markov Models - HMMs) este trabalho descreve algumas metodologias e experiências tendo em vista o reconhecimento de oradores estrangeiros. Quando falamos em Reconhecimento de Fala falamos obrigatoriamente em Modelos Acústicos também. Os modelos acústicos reflectem a maneira como pronunciamos/articulamos uma língua, modelando a sequência de sons emitidos aquando da fala. Essa modelação assenta em segmentos de fala mínimos, os fones, para os quais existe um conjunto de símbolos/alfabetos que representam a sua pronunciação. É no campo da fonética articulatória e acústica que se estuda a representação desses símbolos, sua articulação e pronunciação. Conseguimos descrever palavras analisando as unidades que as constituem, os fones. Um reconhecedor de fala interpreta o sinal de entrada, a fala, como uma sequência de símbolos codificados. Para isso, o sinal é fragmentado em observações de sensivelmente 10 milissegundos cada, reduzindo assim o factor de análise ao intervalo de tempo onde as características de um segmento de som não variam. Os modelos acústicos dão-nos uma noção sobre a probabilidade de uma determinada observação corresponder a uma determinada entidade. É, portanto, através de modelos sobre as entidades do vocabulário a reconhecer que é possível voltar a juntar esses fragmentos de som. Os modelos desenvolvidos neste trabalho são baseados em HMMs. Chamam-se assim por se fundamentarem nas cadeias de Markov (1856 - 1922): sequências de estados onde cada estado é condicionado pelo seu anterior. Localizando esta abordagem no nosso domínio, há que construir um conjunto de modelos - um para cada classe de sons a reconhecer - que serão treinados por dados de treino. Os dados são ficheiros áudio e respectivas transcrições (ao nível da palavra) de modo a que seja possível decompor essa transcrição em fones e alinhá-la a cada som do ficheiro áudio correspondente. Usando um modelo de estados, onde cada estado representa uma observação ou segmento de fala descrita, os dados vão-se reagrupando de maneira a criar modelos estatísticos, cada vez mais fidedignos, que consistam em representações das entidades da fala de uma determinada língua. O reconhecimento por parte de oradores estrangeiros com pronuncias diferentes da língua para qual o reconhecedor foi concebido, pode ser um grande problema para precisão de um reconhecedor. Esta variação pode ser ainda mais problemática que a variação dialectal de uma determinada língua, isto porque depende do conhecimento que cada orador têm relativamente à língua estrangeira. Usando para uma pequena quantidade áudio de oradores estrangeiros para o treino de novos modelos acústicos, foram efectuadas diversas experiências usando corpora de Portugueses a falar Inglês, de Português Europeu e de Inglês. Inicialmente foi explorado o comportamento, separadamente, dos modelos de Ingleses nativos e Portugueses nativos, quando testados com os corpora de teste (teste com nativos e teste com não nativos). De seguida foi treinado um outro modelo usando em simultâneo como corpus de treino, o áudio de Portugueses a falar Inglês e o de Ingleses nativos. Uma outra experiência levada a cabo teve em conta o uso de técnicas de adaptação, tal como a técnica MLLR, do inglês Maximum Likelihood Linear Regression. Esta última permite a adaptação de uma determinada característica do orador, neste caso o sotaque estrangeiro, a um determinado modelo inicial. Com uma pequena quantidade de dados representando a característica que se quer modelar, esta técnica calcula um conjunto de transformações que serão aplicadas ao modelo que se quer adaptar. Foi também explorado o campo da modelação fonética onde estudou-se como é que o orador estrangeiro pronuncia a língua estrangeira, neste caso um Português a falar Inglês. Este estudo foi feito com a ajuda de um linguista, o qual definiu um conjunto de fones, resultado do mapeamento do inventário de fones do Inglês para o Português, que representam o Inglês falado por Portugueses de um determinado grupo de prestígio. Dada a grande variabilidade de pronúncias teve de se definir este grupo tendo em conta o nível de literacia dos oradores. Este estudo foi posteriormente usado na criação de um novo modelo treinado com os corpora de Portugueses a falar Inglês e de Portugueses nativos. Desta forma representamos um reconhecedor de Português nativo onde o reconhecimento de termos ingleses é possível. Tendo em conta a temática do reconhecimento de fala este projecto focou também a recolha de corpora para português europeu e a compilação de um léxico de Português europeu. Na área de aquisição de corpora o autor esteve envolvido na extracção e preparação dos dados de fala telefónica, para posterior treino de novos modelos acústicos de português europeu. Para compilação do léxico de português europeu usou-se um método incremental semi-automático. Este método consistiu em gerar automaticamente a pronunciação de grupos de 10 mil palavras, sendo cada grupo revisto e corrigido por um linguista. Cada grupo de palavras revistas era posteriormente usado para melhorar as regras de geração automática de pronunciações.The tremendous growth of technology has increased the need of integration of spoken language technologies into our daily applications, providing an easy and natural access to information. These applications are of different nature with different user’s interfaces. Besides voice enabled Internet portals or tourist information systems, automatic speech recognition systems can be used in home user’s experiences where TV and other appliances could be voice controlled, discarding keyboards or mouse interfaces, or in mobile phones and palm-sized computers for a hands-free and eyes-free manipulation. The development of these systems causes several known difficulties. One of them concerns the recognizer accuracy on dealing with non-native speakers with different phonetic pronunciations of a given language. The non-native accent can be more problematic than a dialect variation on the language. This mismatch depends on the individual speaking proficiency and speaker’s mother tongue. Consequently, when the speaker’s native language is not the same as the one that was used to train the recognizer, there is a considerable loss in recognition performance. In this thesis, we examine the problem of non-native speech in a speaker-independent and large-vocabulary recognizer in which a small amount of non-native data was used for training. Several experiments were performed using Hidden Markov models, trained with speech corpora containing European Portuguese native speakers, English native speakers and English spoken by European Portuguese native speakers. Initially it was explored the behaviour of an English native model and non-native English speakers’ model. Then using different corpus weights for the English native speakers and English spoken by Portuguese speakers it was trained a model as a pool of accents. Through adaptation techniques it was used the Maximum Likelihood Linear Regression method. It was also explored how European Portuguese speakers pronounce English language studying the correspondences between the phone sets of the foreign and target languages. The result was a new phone set, consequence of the mapping between the English and the Portuguese phone sets. Then a new model was trained with English Spoken by Portuguese speakers’ data and Portuguese native data. Concerning the speech recognition subject this work has other two purposes: collecting Portuguese corpora and supporting the compilation of a Portuguese lexicon, adopting some methods and algorithms to generate automatic phonetic pronunciations. The collected corpora was processed in order to train acoustic models to be used in the Exchange 2007 domain, namely in Outlook Voice Access

    Preprocessing models for speech technologies : the impact of the normalizer and the grapheme-to-phoneme on hybrid systems

    Get PDF
    Um dos usos mais promissores e de crescimento mais rápido da tecnologia de linguagem natural corresponde às Tecnologias de Processamento da Fala. Esses sistemas usam tecnologia de reconhecimento automático de fala e conversão de texto em fala para fornecer uma interface de voz para aplicações de conversão. Com efeito, esta tecnologia está presente em diversas situações do nosso quotidiano, tais como assistentes virtuais em smartphones (como a SIRI ou Alexa), ou sistemas de interação por voz em automóveis. As tecnologias de fala evoluíram progressivamente até ao ponto em que os sistemas podem prestar pouca atenção à sua estrutura linguística. Com efeito, o Conhecimento Linguístico pode ser extremamente importante numa arquitetura de fala, particularmente numa fase de pré-processamento de dados: combinar conhecimento linguístico em modelo de tecnologia de fala permite produzir sistemas mais confiáveis e robustos. Neste sentido, o pré-processamento de dados é uma etapa fundamental na construção de um modelo de Inteligência Artificial (IA). Se os dados forem razoavelmente pré-processados, os resultados serão consistentes e de alta qualidade (García et al., 2016). Por exemplo, os sistemas mais modernos de reconhecimento de fala permitem modelizar entidades linguísticas em vários níveis, frases, palavras, fones e outras unidades, usando várias abordagens estatísticas (Jurafsky & Martin, 2022). Apesar de treinados sobre dados, estes sistemas são tão mais precisos quanto mais eficazes e eficientes a capturarem o conhecimento linguístico. Perante este cenário, este trabalho descreve os métodos de pré-processamento linguístico em sistemas híbridos (de inteligência artificial combinada com conhecimento linguístico) fornecidos por uma empresa internacional de Inteligência Artificial (IA), a Defined.ai. A start-up concentra-se em fornecer dados, modelos e ferramentas de alta qualidade para IA., a partir da sua plataforma de crowdsourcing Neevo. O utilizador da plataforma tem acesso a pequenas tarefas de anotação de dados, tais como: transcrição, gravação e anotação de áudios, validação de pronúncia, tradução de frases, classificação de sentimentos num texto, ou até extração de informação a partir de imagens e vídeos. Até ao momento, a empresa conta com mais de 500,000 utilizadores de 70 países e 50 línguas diferentes. Através duma recolha descentralizada dos dados, a Defined.ai responde à necessidade crescente de dados de treino que sejam justos, i.e., que não reflitam e/ou amplifiquem os padrões de discriminação vigentes na nossa sociedade (e.g., de género, raça, orientação sexual). Como resultado, a Defined.ai pode ser vista como uma comunidade de especialistas em IA, que produz sistemas justos, éticos e de futuro. Assim, o principal objetivo deste trabalho é aprimorar e avançar a qualidade dos modelos de pré-processamento, aplicando-lhes conhecimento linguístico. Assim, focamo-nos em dois modelos linguísticos introdutórios numa arquitetura de fala: Normalizador e Grafema-Fonema. Para abordar o assunto principal deste estudo, vamos delinear duas iniciativas realizadas em colaboração com a equipa de Machine learning da Defined.ai. O primeiro projeto centra-se na expansão e melhoria de um modelo Normalizador pt-PT. O segundo projeto abrange a criação de modelos Grafema-Fonema (do inglês Grapheme-to-phoneme, G2P) para duas línguas diferentes – Sueco e Russo. Os resultados mostram que ter uma abordagem baseada em regras para o Normalizador e G2P aumenta a sua precisão e desempenho, representado uma vantagem significativa na melhoria das ferramentas da Defined.ai e nas arquiteturas de fala. Além disso, com os resultados obtidos no primeiro projeto, melhoramos o normalizador na sua facilidade de uso, aumentando cada regra com o respetivo conhecimento linguístico. Desta forma, a nossa pesquisa demonstra o valor e a importância do conhecimento linguístico em modelos de pré-processamento. O primeiro projeto teve como objetivo fornecer cobertura para diversas regras linguísticas: Números Reais, Símbolos, Abreviaturas, Ordinais, Medidas, Moeda, Datas e Hora. A tarefa consistia em expandir as regras com suas respetivas expressões normalizadas a partir de regras a seguir que teriam uma leitura não marcada inequívoca própria. O objetivo principal é melhorar o normalizador tornando-o mais simples, consistente entre diferentes linguagens e de forma a cobrir entradas não ambíguas. Para preparar um modelo G2P para dois idiomas diferentes - Sueco e Russo - quatro tarefas foram realizadas: 1. Preparar uma análise linguística de cada língua, 2. Desenvolver um inventário fonético-fonológico inicial, 3. Mapear e converter automaticamente o léxico fonético para DC-Arpabet (o alfabeto fonético que a Defined.ai construiu), 4. Rever e corrigir o léxico fonético, e 4. Avaliar o modelo Grafema-Fonema. A revisão dos léxicos fonéticos foi realizada, em consulta com a nossa equipa da Defined.ai, por linguistas nativos que verificaram se os inventários fonéticos-fonológicos seriam adequados para transcrever. Segundo os resultados de cada modelo, nós avaliamos de acordo com 5 métricas padrão na literatura: Word Error Rate (WER), Precision, Recall, F1-score e Accuracy. Adaptamos a métrica WER para Word Error Rate over normalizable tokens (WERnorm) por forma a responder às necessidades dos nossos modelos. A métrica WER (ou taxa de erro por palavra) foi adaptada de forma a contabilizar tokens normalizáveis, em vez de todos os tokens. Deste modo, a avaliação do normalizador, avalia-se usando um conjunto de aproximadamente 1000 frases de referência, normalizadas manualmente e marcadas com a regra de normalização que deveria ser aplicada (por exemplo, números reais, símbolos, entre outros). De acordo com os resultados, na versão 2 do normalizador, obtivemos discrepâncias estatisticamente significativas entre as regras. A regra dos ordinais apresenta a maior percentagem (94%) e as abreviaturas (43%) o menor percentual. Concluímos também um aumento significativo no desempenho de algumas das regras. Por exemplo, as abreviaturas mostram um desempenho de 23 pontos percentuais (pp.) superior. Quando comparamos as duas versões, concluímos que a versão 2 do normalizador apresenta, em média, uma taxa de erro 4 pp. menor sobre os tokens normalizáveis em comparação com a versão 1. Assim, o uso da regra dos ordinais (94% F1-score) e da regra dos números reais (89% F1-score) é a maior fonte de melhoria no normalizador. Além disso, em relação à precisão, a versão 2 apresenta uma melhoria de, em média, 28 pp em relação à versão 1. No geral, os resultados revelam inequivocamente uma melhoria da performance do normalizador em todas as regras aplicadas. De acordo com os resultados do segundo projeto, o léxico fonético sueco alcançou um WER de 10%, enquanto o léxico fonético russo um WER ligeiramente inferior (11%). Os inventários fonético-fonológicos suecos apresentam uma precisão maior (97%) do que os inventários fonético-fonológicos russos (96%). No geral, o modelo sueco G2P apresenta um melhor desempenho (98%), embora a sua diferença ser menor quando comparado ao modelo russo (96%). Em conclusão, os resultados obtidos tiveram um impacto significativo na pipeline de fala da empresa e nas arquiteturas de fala escrita (15% é a arquitetura de fala). Além disso, a versão 2 do normalizador começou a ser usada noutros projetos do Defined.ai, principalmente em coleções de prompts de fala. Observamos que nossa expansão e melhoria na ferramenta abrangeu expressões que compõem uma proporção considerável de expressões normalizáveis, não limitando a utilidade da ferramenta, mas aumentando a diversidade que ela pode oferecer ao entregar prompts, por exemplo. Com base no trabalho desenvolvido, podemos observar que, ao ter uma abordagem baseada em regras para o Normalizador e o G2P, conseguimos aumentar a sua precisão e desempenho, representando não só uma vantagem significativa na melhoria das ferramentas da Defined.ai, como também nas arquiteturas de fala. Além disso, a nossa abordagem também foi aplicada a outras línguas obtendo resultados muito positivos e mostrando a importância da metodologia aplicada nesta tese. Desta forma, o nosso trabalho mostra a relevância e o valor acrescentado de aplicar conhecimento linguístico a modelos de pré-processamento.One of the most fast-growing and highly promising uses of natural language technology is in Speech Technologies. Such systems use automatic speech recognition (ASR) and text-to-speech (TTS) technology to provide a voice interface for conversational applications. Speech technologies have progressively evolved to the point where they pay little attention to their linguistic structure. Indeed, linguistic knowledge can be extremely important in a speech pipeline, particularly in the Data Preprocessing phase: combining linguistic knowledge in a speech technology model allows producing more reliable and robust systems. Given this background, this work describes the linguistic preprocessing methods in hybrid systems provided by an Artificial Intelligence (AI) international company, Defined.ai. The startup focuses on providing high-quality data, models, and AI tools. The main goal of this work is to enhance and advance the quality of preprocessing models by applying linguistic knowledge. Thus, we focus on two introductory linguistic models in a speech pipeline: Normalizer and Grapheme-to-Phoneme (G2P). To do so, two initiatives were conducted in collaboration with the Defined.ai Machine Learning team. The first project focuses on expanding and improving a pt-PT Normalizer model. The second project covers creating G2P models for two different languages – Swedish and Russian. Results show that having a rule-based approach to the Normalizer and G2P increases its accuracy and performance, representing a significant advantage in improving Defined.ai tools and speech pipelines. Also, with the results obtained on the first project, we improved the normalizer in ease of use by increasing each rule with linguistic knowledge. Accordingly, our research demonstrates the added value of linguistic knowledge in preprocessing models
    corecore