3,919 research outputs found

    Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural Networks

    Get PDF
    The recording of seizures is of primary interest in the evaluation of epileptic patients. Seizure is the phenomenon of rhythmicity discharge from either a local area or the whole brain and the individual behavior usually lasts from seconds to minutes. Since seizures, in general, occur infrequently and unpredictably, automatic detection of seizures during long-term electroencephalograph (EEG) recordings is highly recommended. As EEG signals are nonstationary, the conventional methods of frequency analysis are not successful for diagnostic purposes. This paper presents a method of analysis of EEG signals, which is based on time-frequency analysis. Initially, selected segments of the EEG signals are analyzed using time-frequency methods and several features are extracted for each segment, representing the energy distribution in the time-frequency plane. Then, those features are used as an input in an artificial neural network (ANN), which provides the final classification of the EEG segments concerning the existence of seizures or not. We used a publicly available dataset in order to evaluate our method and the evaluation results are very promising indicating overall accuracy from 97.72% to 100%

    Automatic Seizure Detection Based on Star Graph Topological Indices

    Get PDF
    [Abstract] The recognition of seizures is very important for the diagnosis of patients with epilepsy. The seizure is a process of rhythmic discharge in brain and occurs rarely and unpredictably. This behavior generates a need of an automatic detection of seizures by using the signals of long-term electroencephalography (EEG) recordings. Due to the non-stationary character of EEG signals, the conventional methods of frequency analysis are not the best alternative to obtain good results in diagnostic purpose. The present work proposes a method of EEG signal analysis based on star graph topological indices (SGTIs) for the first time. The signal information, such as amplitude and time occurrence, is codified into invariant SGTIs which are the basis for the classification models that can discriminate the epileptic EEG records from the non-epileptic ones. The method with SGTIs and the simplest linear discriminant methods provide similar results to those previously published, which are based on the time-frequency analysis and artificial neural networks. Thus, this work proposes a simpler and faster alternative for automatic detection of seizures from the EEG recordings.Xunta de Galicia; 2007/127Xunta de Galicia; 2007/144Instituto de Salud Carlos III; PIO52048Instituto de Salud Carlos III; RD07/0067/0005Ministerio de Ciencia e Innovación; TIN2009—07707

    Optimal features for online seizure detection

    No full text

    SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification

    Full text link
    Automatic classification of epileptic seizure types in electroencephalograms (EEGs) data can enable more precise diagnosis and efficient management of the disease. This task is challenging due to factors such as low signal-to-noise ratios, signal artefacts, high variance in seizure semiology among epileptic patients, and limited availability of clinical data. To overcome these challenges, in this paper, we present SeizureNet, a deep learning framework which learns multi-spectral feature embeddings using an ensemble architecture for cross-patient seizure type classification. We used the recently released TUH EEG Seizure Corpus (V1.4.0 and V1.5.2) to evaluate the performance of SeizureNet. Experiments show that SeizureNet can reach a weighted F1 score of up to 0.94 for seizure-wise cross validation and 0.59 for patient-wise cross validation for scalp EEG based multi-class seizure type classification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints

    An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach

    Full text link
    Epilepsy is a neurological disorder and for its detection, encephalography (EEG) is a commonly used clinical approach. Manual inspection of EEG brain signals is a time-consuming and laborious process, which puts heavy burden on neurologists and affects their performance. Several automatic techniques have been proposed using traditional approaches to assist neurologists in detecting binary epilepsy scenarios e.g. seizure vs. non-seizure or normal vs. ictal. These methods do not perform well when classifying ternary case e.g. ictal vs. normal vs. inter-ictal; the maximum accuracy for this case by the state-of-the-art-methods is 97+-1%. To overcome this problem, we propose a system based on deep learning, which is an ensemble of pyramidal one-dimensional convolutional neural network (P-1D-CNN) models. In a CNN model, the bottleneck is the large number of learnable parameters. P-1D-CNN works on the concept of refinement approach and it results in 60% fewer parameters compared to traditional CNN models. Further to overcome the limitations of small amount of data, we proposed augmentation schemes for learning P-1D-CNN model. In almost all the cases concerning epilepsy detection, the proposed system gives an accuracy of 99.1+-0.9% on the University of Bonn dataset.Comment: 18 page
    corecore