3,416 research outputs found

    An Automatic Level Set Based Liver Segmentation from MRI Data Sets

    Get PDF
    A fast and accurate liver segmentation method is a challenging work in medical image analysis area. Liver segmentation is an important process for computer-assisted diagnosis, pre-evaluation of liver transplantation and therapy planning of liver tumors. There are several advantages of magnetic resonance imaging such as free form ionizing radiation and good contrast visualization of soft tissue. Also, innovations in recent technology and image acquisition techniques have made magnetic resonance imaging a major tool in modern medicine. However, the use of magnetic resonance images for liver segmentation has been slow when we compare applications with the central nervous systems and musculoskeletal. The reasons are irregular shape, size and position of the liver, contrast agent effects and similarities of the gray values of neighbor organs. Therefore, in this study, we present a fully automatic liver segmentation method by using an approximation of the level set based contour evolution from T2 weighted magnetic resonance data sets. The method avoids solving partial differential equations and applies only integer operations with a two-cycle segmentation algorithm. The efficiency of the proposed approach is achieved by applying the algorithm to all slices with a constant number of iteration and performing the contour evolution without any user defined initial contour. The obtained results are evaluated with four different similarity measures and they show that the automatic segmentation approach gives successful results

    Feasibility of automated 3-dimensional magnetic resonance imaging pancreas segmentation.

    Get PDF
    PurposeWith the advent of MR guided radiotherapy, internal organ motion can be imaged simultaneously during treatment. In this study, we evaluate the feasibility of pancreas MRI segmentation using state-of-the-art segmentation methods.Methods and materialT2 weighted HASTE and T1 weighted VIBE images were acquired on 3 patients and 2 healthy volunteers for a total of 12 imaging volumes. A novel dictionary learning (DL) method was used to segment the pancreas and compared to t mean-shift merging (MSM), distance regularized level set (DRLS), graph cuts (GC) and the segmentation results were compared to manual contours using Dice's index (DI), Hausdorff distance and shift of the-center-of-the-organ (SHIFT).ResultsAll VIBE images were successfully segmented by at least one of the auto-segmentation method with DI >0.83 and SHIFT ≤2 mm using the best automated segmentation method. The automated segmentation error of HASTE images was significantly greater. DL is statistically superior to the other methods in Dice's overlapping index. For the Hausdorff distance and SHIFT measurement, DRLS and DL performed slightly superior to the GC method, and substantially superior to MSM. DL required least human supervision and was faster to compute.ConclusionOur study demonstrated potential feasibility of automated segmentation of the pancreas on MRI images with minimal human supervision at the beginning of imaging acquisition. The achieved accuracy is promising for organ localization

    Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation in Congenital Heart Disease

    Full text link
    We propose an automatic method using dilated convolutional neural networks (CNNs) for segmentation of the myocardium and blood pool in cardiovascular MR (CMR) of patients with congenital heart disease (CHD). Ten training and ten test CMR scans cropped to an ROI around the heart were provided in the MICCAI 2016 HVSMR challenge. A dilated CNN with a receptive field of 131x131 voxels was trained for myocardium and blood pool segmentation in axial, sagittal and coronal image slices. Performance was evaluated within the HVSMR challenge. Automatic segmentation of the test scans resulted in Dice indices of 0.80±\pm0.06 and 0.93±\pm0.02, average distances to boundaries of 0.96±\pm0.31 and 0.89±\pm0.24 mm, and Hausdorff distances of 6.13±\pm3.76 and 7.07±\pm3.01 mm for the myocardium and blood pool, respectively. Segmentation took 41.5±\pm14.7 s per scan. In conclusion, dilated CNNs trained on a small set of CMR images of CHD patients showing large anatomical variability provide accurate myocardium and blood pool segmentations

    Shape-Based Models for Interactive Segmentation of Medical Images

    Get PDF
    Accurate image segmentation is one of the key problems in computer vision. In domains such as radiation treatment planning, dosimetrists must manually trace the outlines of a few critical structures on large numbers of images. Considerable similarity can be seen in the shape of these regions, both between adjacent slices in a particular patient and across the spectrum of patients. Consequently we should be able to model this similarity and use it to assist in the process of segmentation. Previous work has demonstrated that a constraint-based 2D radial model can capture generic shape information for certain shape classes, and can reduce user interaction by a factor of three over purely manual segmentation. Additional simulation studies have shown that a probabilistic version of the model has the potential to further reduce user interaction. This paper describes an implementation of both models in a general-purpose imaging and graphics framework and compares the usefulness of the models on several shape classes

    A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 118-135)Text in English; Abstract: Turkish and Englishxv, 145 leavesDeveloping a robust method for liver segmentation from magnetic resonance images is a challenging task due to similar intensity values between adjacent organs, geometrically complex liver structure and injection of contrast media, which causes all tissues to have different gray level values. Several artifacts of pulsation and motion, and partial volume effects also increase difficulties for automatic liver segmentation from magnetic resonance images. In this thesis, we present an overview about liver segmentation methods in magnetic resonance images and show comparative results of seven different liver segmentation approaches chosen from deterministic (K-means based), probabilistic (Gaussian model based), supervised neural network (multilayer perceptron based) and deformable model based (level set) segmentation methods. The results of qualitative and quantitative analysis using sensitivity, specificity and accuracy metrics show that the multilayer perceptron based approach and a level set based approach which uses a distance regularization term and signed pressure force function are reasonable methods for liver segmentation from spectral pre-saturation inversion recovery images. However, the multilayer perceptron based segmentation method requires a higher computational cost. The distance regularization term based automatic level set method is very sensitive to chosen variance of Gaussian function. Our proposed level set based method that uses a novel signed pressure force function, which can control the direction and velocity of the evolving active contour, is faster and solves several problems of other applied methods such as sensitivity to initial contour or variance parameter of the Gaussian kernel in edge stopping functions without using any regularization term
    corecore