22 research outputs found

    An ex vivo system to study cellular dynamics underlying mouse peri-implantation development

    Get PDF
    マウスの着床期の胚発生を三次元で再現することに成功. 京都大学プレスリリース. 2022-02-09.Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures the study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate mouse development from E4.5 to E6.0. Our system not only recapitulates embryonic growth, axis initiation, and overall 3D architecture in 49% of the cases, but its compatibility with light-sheet microscopy also enables the study of cellular dynamics through automatic cell segmentation. We find that, upon implantation, release of the increasing tension in the polar trophectoderm is necessary for its constriction and invagination. The resulting extra-embryonic ectoderm plays a key role in growth, morphogenesis, and patterning of the neighboring epiblast, which subsequently gives rise to all embryonic tissues. This 3D ex vivo system thus offers unprecedented access to peri-implantation development for in toto monitoring, measurement, and spatiotemporally controlled perturbation, revealing a mechano-chemical interplay between extra-embryonic and embryonic tissues

    Using 3D reconstruction to analyse early mouse development

    Get PDF

    Semiautomated Analysis of Embryoscope Images: Using Localized Variance of Image Intensity to Detect Embryo Developmental Stages

    Get PDF
    Embryo selection in in vitro fertilization (IVF) treatment has traditionally been done manually using microscopy at intermittent time points during embryo development. Novel technique has made it possible to monitor embryos using time lapse for long periods of time and together with the reduced cost of data storage, this has opened the door to long-term time-lapse monitoring, and large amounts of image material is now routinely gathered. However, the analysis is still to a large extent performed manually, and images are mostly used as qualitative reference. To make full use of the increased amount of microscopic image material, (semi)automated computer-aided tools are needed. An additional benefit of automation is the establishment of standardization tools for embryo selection and transfer, making decisions more transparent and less subjective. Another is the possibility to gather and analyze data in a high-throughput manner, gathering data from multiple clinics and increasing our knowledge of early human embryo development. In this study, the extraction of data to automatically select and track spatio-temporal events and features from sets of embryo images has been achieved using localized variance based on the distribution of image grey scale levels. A retrospective cohort study was performed using time-lapse imaging data derived from 39 human embryos from seven couples, covering the time from fertilization up to 6.3 days. The profile of localized variance has been used to characterize syngamy, mitotic division and stages of cleavage, compaction, and blastocoel formation. Prior to analysis, focal plane and embryo location were automatically detected, limiting precomputational user interaction to a calibration step and usable for automatic detection of region of interest (ROI) regardless of the method of analysis. The results were validated against the opinion of clinical experts. © 2015 International Society for Advancement of Cytometr

    Deep learning-enabled technologies for bioimage analysis.

    Get PDF
    Deep learning (DL) is a subfield of machine learning (ML), which has recently demonstrated its potency to significantly improve the quantification and classification workflows in biomedical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of embryology, point-of-care ovulation testing, as a predictive tool for fetal heart pregnancy, cancer diagnostics via classification of cancer histology images, autosomal polycystic kidney disease, and chronic kidney diseases

    Embryonic Stem Cells

    Get PDF
    Embryonic stem cells are one of the key building blocks of the emerging multidisciplinary field of regenerative medicine, and discoveries and new technology related to embryonic stem cells are being made at an ever increasing rate. This book provides a snapshot of some of the research occurring across a wide range of areas related to embryonic stem cells, including new methods, tools and technologies; new understandings about the molecular biology and pluripotency of these cells; as well as new uses for and sources of embryonic stem cells. The book will serve as a valuable resource for engineers, scientists, and clinicians as well as students in a wide range of disciplines
    corecore