1,084 research outputs found

    Dimensionality Reduction in Deep Learning for Chest X-Ray Analysis of Lung Cancer

    Full text link
    Efficiency of some dimensionality reduction techniques, like lung segmentation, bone shadow exclusion, and t-distributed stochastic neighbor embedding (t-SNE) for exclusion of outliers, is estimated for analysis of chest X-ray (CXR) 2D images by deep learning approach to help radiologists identify marks of lung cancer in CXR. Training and validation of the simple convolutional neural network (CNN) was performed on the open JSRT dataset (dataset #01), the JSRT after bone shadow exclusion - BSE-JSRT (dataset #02), JSRT after lung segmentation (dataset #03), BSE-JSRT after lung segmentation (dataset #04), and segmented BSE-JSRT after exclusion of outliers by t-SNE method (dataset #05). The results demonstrate that the pre-processed dataset obtained after lung segmentation, bone shadow exclusion, and filtering out the outliers by t-SNE (dataset #05) demonstrates the highest training rate and best accuracy in comparison to the other pre-processed datasets.Comment: 6 pages, 14 figure

    Lung Segmentation from Chest X-rays using Variational Data Imputation

    Full text link
    Pulmonary opacification is the inflammation in the lungs caused by many respiratory ailments, including the novel corona virus disease 2019 (COVID-19). Chest X-rays (CXRs) with such opacifications render regions of lungs imperceptible, making it difficult to perform automated image analysis on them. In this work, we focus on segmenting lungs from such abnormal CXRs as part of a pipeline aimed at automated risk scoring of COVID-19 from CXRs. We treat the high opacity regions as missing data and present a modified CNN-based image segmentation network that utilizes a deep generative model for data imputation. We train this model on normal CXRs with extensive data augmentation and demonstrate the usefulness of this model to extend to cases with extreme abnormalities.Comment: Accepted to be presented at the first Workshop on the Art of Learning with Missing Values (Artemiss) hosted by the 37th International Conference on Machine Learning (ICML). Source code, training data and the trained models are available here: https://github.com/raghavian/lungVAE

    Computer-aided diagnosis in chest radiography: a survey

    Full text link

    Computer-aided detection of interstitial lung diseases: A texture approach

    Get PDF
    We have developed the flexible scheme for computer-aided detection (CAD) of interstitial lung diseases on chest radiographs. These schemes enable us to perform diagnostics in the broad circumstances of pneumonia and other interstitial lung diseases. It is applied in the case of children pneumonia when conditions are difficult to standardize. In the adults' case the schemes of CAD are more adaptive, as there are more characteristic interstitial lung tissue's changes to all kinds of pathological conditions. Even in the norm of drawing there are more visible and more highlighted features, leading to better results. The CAD scheme works as follows. For the first of all, we are using adopted algorithms of active contours to select the area of lungs, and then to divide this area into subareas - regions of interest (40 different ROI). Then ROIs were subjected to the 2-dimensional Daubechies wavelet transform, and only main transformation was used. For every transformation 12 texture measures were calculated. Principal component analysis (PCA) was used to extract 2 main components for each ROI, and these components were compared to predictive component region

    PadChest: A large chest x-ray image dataset with multi-label annotated reports

    Get PDF
    We present a labeled large-scale, high resolution chest x-ray dataset for the automated exploration of medical images along with their associated reports. This dataset includes more than 160,000 images obtained from 67,000 patients that were interpreted and reported by radiologists at Hospital San Juan Hospital (Spain) from 2009 to 2017, covering six different position views and additional information on image acquisition and patient demography. The reports were labeled with 174 different radiographic findings, 19 differential diagnoses and 104 anatomic locations organized as a hierarchical taxonomy and mapped onto standard Unified Medical Language System (UMLS) terminology. Of these reports, 27% were manually annotated by trained physicians and the remaining set was labeled using a supervised method based on a recurrent neural network with attention mechanisms. The labels generated were then validated in an independent test set achieving a 0.93 Micro-F1 score. To the best of our knowledge, this is one of the largest public chest x-ray database suitable for training supervised models concerning radiographs, and the first to contain radiographic reports in Spanish. The PadChest dataset can be downloaded from http://bimcv.cipf.es/bimcv-projects/padchest/

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    corecore