2,980 research outputs found

    AMOS: A Large-Scale Abdominal Multi-Organ Benchmark for Versatile Medical Image Segmentation

    Full text link
    Despite the considerable progress in automatic abdominal multi-organ segmentation from CT/MRI scans in recent years, a comprehensive evaluation of the models' capabilities is hampered by the lack of a large-scale benchmark from diverse clinical scenarios. Constraint by the high cost of collecting and labeling 3D medical data, most of the deep learning models to date are driven by datasets with a limited number of organs of interest or samples, which still limits the power of modern deep models and makes it difficult to provide a fully comprehensive and fair estimate of various methods. To mitigate the limitations, we present AMOS, a large-scale, diverse, clinical dataset for abdominal organ segmentation. AMOS provides 500 CT and 100 MRI scans collected from multi-center, multi-vendor, multi-modality, multi-phase, multi-disease patients, each with voxel-level annotations of 15 abdominal organs, providing challenging examples and test-bed for studying robust segmentation algorithms under diverse targets and scenarios. We further benchmark several state-of-the-art medical segmentation models to evaluate the status of the existing methods on this new challenging dataset. We have made our datasets, benchmark servers, and baselines publicly available, and hope to inspire future research. Information can be found at https://amos22.grand-challenge.org

    Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query Embedding

    Full text link
    Automatic parsing of human anatomies at instance-level from 3D computed tomography (CT) scans is a prerequisite step for many clinical applications. The presence of pathologies, broken structures or limited field-of-view (FOV) all can make anatomy parsing algorithms vulnerable. In this work, we explore how to exploit and conduct the prosperous detection-then-segmentation paradigm in 3D medical data, and propose a steerable, robust, and efficient computing framework for detection, identification, and segmentation of anatomies in CT scans. Considering complicated shapes, sizes and orientations of anatomies, without lose of generality, we present the nine degrees-of-freedom (9-DoF) pose estimation solution in full 3D space using a novel single-stage, non-hierarchical forward representation. Our whole framework is executed in a steerable manner where any anatomy of interest can be directly retrieved to further boost the inference efficiency. We have validated the proposed method on three medical imaging parsing tasks of ribs, spine, and abdominal organs. For rib parsing, CT scans have been annotated at the rib instance-level for quantitative evaluation, similarly for spine vertebrae and abdominal organs. Extensive experiments on 9-DoF box detection and rib instance segmentation demonstrate the effectiveness of our framework (with the identification rate of 97.0% and the segmentation Dice score of 90.9%) in high efficiency, compared favorably against several strong baselines (e.g., CenterNet, FCOS, and nnU-Net). For spine identification and segmentation, our method achieves a new state-of-the-art result on the public CTSpine1K dataset. Last, we report highly competitive results in multi-organ segmentation at FLARE22 competition. Our annotations, code and models will be made publicly available at: https://github.com/alibaba-damo-academy/Med_Query.Comment: updated versio

    DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation

    Full text link
    Automatic organ segmentation is an important yet challenging problem for medical image analysis. The pancreas is an abdominal organ with very high anatomical variability. This inhibits previous segmentation methods from achieving high accuracies, especially compared to other organs such as the liver, heart or kidneys. In this paper, we present a probabilistic bottom-up approach for pancreas segmentation in abdominal computed tomography (CT) scans, using multi-level deep convolutional networks (ConvNets). We propose and evaluate several variations of deep ConvNets in the context of hierarchical, coarse-to-fine classification on image patches and regions, i.e. superpixels. We first present a dense labeling of local image patches via PConvNetP{-}\mathrm{ConvNet} and nearest neighbor fusion. Then we describe a regional ConvNet (R1ConvNetR_1{-}\mathrm{ConvNet}) that samples a set of bounding boxes around each image superpixel at different scales of contexts in a "zoom-out" fashion. Our ConvNets learn to assign class probabilities for each superpixel region of being pancreas. Last, we study a stacked R2ConvNetR_2{-}\mathrm{ConvNet} leveraging the joint space of CT intensities and the PConvNetP{-}\mathrm{ConvNet} dense probability maps. Both 3D Gaussian smoothing and 2D conditional random fields are exploited as structured predictions for post-processing. We evaluate on CT images of 82 patients in 4-fold cross-validation. We achieve a Dice Similarity Coefficient of 83.6±\pm6.3% in training and 71.8±\pm10.7% in testing.Comment: To be presented at MICCAI 2015 - 18th International Conference on Medical Computing and Computer Assisted Interventions, Munich, German

    Morphological and multi-level geometrical descriptor analysis in CT and MRI volumes for automatic pancreas segmentation

    Get PDF
    Automatic pancreas segmentation in 3D radiological scans is a critical, yet challenging task. As a prerequisite for computer-aided diagnosis (CADx) systems, accurate pancreas segmentation could generate both quantitative and qualitative information towards establishing the severity of a condition, and thus provide additional guidance for therapy planning. Since the pancreas is an organ of high inter-patient anatomical variability, previous segmentation approaches report lower quantitative accuracy scores in comparison to abdominal organs such as the liver or kidneys. This paper presents a novel approach for automatic pancreas segmentation in magnetic resonance imaging (MRI) and computer tomography (CT) scans. This method exploits 3D segmentation that, when coupled with geometrical and morphological characteristics of abdominal tissue, classifies distinct contours in tight pixel-range proximity as “pancreas” or “non-pancreas”. There are three main stages to this approach: (1) identify a major pancreas region and apply contrast enhancement to differentiate between pancreatic and surrounding tissue; (2) perform 3D segmentation via continuous max-flow and min-cuts approach, structured forest edge detection, and a training dataset of annotated pancreata; (3) eliminate non-pancreatic contours from resultant segmentation via morphological operations on area, structure and connectivity between distinct contours. The proposed method is evaluated on a dataset containing 82 CT image volumes, achieving mean Dice Similarity coefficient (DSC) of 79.3 ± 4.4%. Two MRI datasets containing 216 and 132 image volumes are evaluated, achieving mean DSC 79.6 ± 5.7% and 81.6 ± 5.1% respectively. This approach is statistically stable, reflected by lower metrics in standard deviation in comparison to state-of-the-art approaches

    A Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans

    Full text link
    Deep neural networks have been widely adopted for automatic organ segmentation from abdominal CT scans. However, the segmentation accuracy of some small organs (e.g., the pancreas) is sometimes below satisfaction, arguably because deep networks are easily disrupted by the complex and variable background regions which occupies a large fraction of the input volume. In this paper, we formulate this problem into a fixed-point model which uses a predicted segmentation mask to shrink the input region. This is motivated by the fact that a smaller input region often leads to more accurate segmentation. In the training process, we use the ground-truth annotation to generate accurate input regions and optimize network weights. On the testing stage, we fix the network parameters and update the segmentation results in an iterative manner. We evaluate our approach on the NIH pancreas segmentation dataset, and outperform the state-of-the-art by more than 4%, measured by the average Dice-S{\o}rensen Coefficient (DSC). In addition, we report 62.43% DSC in the worst case, which guarantees the reliability of our approach in clinical applications.Comment: Accepted to MICCAI 2017 (8 pages, 3 figures
    corecore