430 research outputs found

    Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography

    Get PDF
    The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta. The maximum aortic diameter of the abdominal tract was compared using a threshold value (30 mm). Blinded manual measurements from a radiologist were done in order to create a true comparison. The screening pipeline was tested on 48 patients with aneurysm and 25 without aneurysm. The average diameter manually measured was 51.1 ± 14.4 mm for patients with aneurysms and 21.7 ± 3.6 mm for patients without aneurysms. The pipeline correctly classified 47 AAA out of 48 and 24 control patients out of 25 with 97% accuracy, 98% sensitivity, and 96% specificity. The automated pipeline of aneurysm measurements in the abdominal tract reported a median error with regard to the maximum abdominal diameter measurement of 1.3 mm. Our approach allowed for the maximum diameter of 51.2 ± 14.3 mm in patients with aneurysm and 22.0 ± 4.0 mm in patients without an aneurysm. The DL-based screening for AAA is a feasible and accurate method, calling for further validation using a larger pool of diagnostic images towards its clinical use

    3D-Ultrasound Based Mechanical and Geometrical Analysis of Abdominal Aortic Aneurysms and Relationship to Growth

    Get PDF
    The heterogeneity of progression of abdominal aortic aneurysms (AAAs) is not well understood. This study investigates which geometrical and mechanical factors, determined using time-resolved 3D ultrasound (3D + t US), correlate with increased growth of the aneurysm. The AAA diameter, volume, wall curvature, distensibility, and compliance in the maximal diameter region were determined automatically from 3D + t echograms of 167 patients. Due to limitations in the field-of-view and visibility of aortic pulsation, measurements of the volume, compliance of a 60 mm long region and the distensibility were possible for 78, 67, and 122 patients, respectively. Validation of the geometrical parameters with CT showed high similarity, with a median similarity index of 0.92 and root-mean-square error (RMSE) of diameters of 3.5 mm. Investigation of Spearman correlation between parameters showed that the elasticity of the aneurysms decreases slightly with diameter (p = 0.034) and decreases significantly with mean arterial pressure (p < 0.0001). The growth of a AAA is significantly related to its diameter, volume, compliance, and surface curvature (p < 0.002). Investigation of a linear growth model showed that compliance is the best predictor for upcoming AAA growth (RMSE 1.70 mm/year). To conclude, mechanical and geometrical parameters of the maximally dilated region of AAAs can automatically and accurately be determined from 3D + t echograms. With this, a prediction can be made about the upcoming AAA growth. This is a step towards more patient-specific characterization of AAAs, leading to better predictability of the progression of the disease and, eventually, improved clinical decision making about the treatment of AAAs

    Improving patient-specific assessments of regional aortic mechanics via quantitative magnetic resonance imaging with early applications in patients at elevated risk for thoracic aortopathy

    Get PDF
    Unstable aortic aneurysms and dissections are serious cardiovascular conditions associated with high mortality. The current gold standards for assessment of stability, however, rely on simple geometric measurements, like cross-sectional area or increased diameter between follow-up scans, and fail to incorporate information about underlying aortic mechanics. Displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) has been used previously to determine heterogeneous circumferential strain patterns in the aortas of healthy volunteers. Here, I introduce technical improvements to DENSE aortic analysis and early pilot application in patients at higher risk for the development of aortopathies. Modifications to the DENSE aortic postprocessing method involving the separate spatial smoothing of the inner and outer layers of the aortic wall allowed for the preservation of radial and shear strains without impacting circumferential strain calculations. The implementation of a semiautomatic segmentation approach utilizing the intrinsic kinematic information provided by DENSE MRI reduced lengthy post-processing times while generating circumferential strain distributions with good agreement to a manually generated benchmark. Finally, a new analysis pipeline for the combined use and spatial correlation of 4D phase-contrast MRI alongside DENSE MRI to quantify both regional fluid and solid mechanics in the descending aorta is explored in a limited pilot study

    Automatic Abdominal Aortic Aneurysm segmentation in MR images

    Get PDF
    Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system

    Automatic detection, segmentation and classification of abdominal aortic aneurysm using deep learning

    Get PDF
    This study is focused on developing an automated algorithm for the detection and segmentation of Abdominal Aortic Aneurysm (AAA) region in CT Angiography images. The outcome of this research will offer great assistance for radiologists to detect the AAA region and estimate its volume in CT datasets efficiently. In addition, suitable treatment strategies can also be suggested based on the classification of the AAA severity and measurement of the aorta diameter. This research takes the initiative by exploring and applying deep learning architecture in the study of AAA detection and segmentation, which has never been done by other researchers before in AAA problems. The findings from this study will also act as a reference for other similar future works. Deep Belief Network (DBN) is applied for the purpose of AAA detection and severity classification in this study. Optimum parameters for training the DBN are determined for the training data from the selected dataset. AAA region can be successfully segmented from the CT images and the result is comparable to the existing method with advantage over the existing method that the proposed method is fully automatic and added with auto detection and classification features. The limitation of the trained DBN in AAA detection accuracy can be improved by incorporating and adjusting the detection probability threshold and shape constraints. In future, the DBN can be further enhanced by adding and training it with more data which covers a wider variety of features, as well as extending its capability to perform detailed segmentation on AAA region

    Optimization of CT scanning protocol of Type B aortic dissection follow-up through 3D printed model

    Get PDF
    This research aims to develop and evaluate a human tissue-like material 3D printed model used as a phantom in determining optimized scanning parameters to reduce the radiation dose for Type B aortic dissection patients after thoracic endovascular aortic repair. The results show that radiation risk for follow-up Type B aortic dissection patients can be potentially reduced. Further, the value of using 3D printed model in studying CT scanning protocols was further validated

    Computational fluid dynamics indicators to improve cardiovascular pathologies

    Get PDF
    In recent years, the study of computational hemodynamics within anatomically complex vascular regions has generated great interest among clinicians. The progress in computational fluid dynamics, image processing and high-performance computing haveallowed us to identify the candidate vascular regions for the appearance of cardiovascular diseases and to predict how this disease may evolve. Medicine currently uses a paradigm called diagnosis. In this thesis we attempt to introduce into medicine the predictive paradigm that has been used in engineering for many years. The objective of this thesis is therefore to develop predictive models based on diagnostic indicators for cardiovascular pathologies. We try to predict the evolution of aortic abdominal aneurysm, aortic coarctation and coronary artery disease in a personalized way for each patient. To understand how the cardiovascular pathology will evolve and when it will become a health risk, it is necessary to develop new technologies by merging medical imaging and computational science. We propose diagnostic indicators that can improve the diagnosis and predict the evolution of the disease more efficiently than the methods used until now. In particular, a new methodology for computing diagnostic indicators based on computational hemodynamics and medical imaging is proposed. We have worked with data of anonymous patients to create real predictive technology that will allow us to continue advancing in personalized medicine and generate more sustainable health systems. However, our final aim is to achieve an impact at a clinical level. Several groups have tried to create predictive models for cardiovascular pathologies, but they have not yet begun to use them in clinical practice. Our objective is to go further and obtain predictive variables to be used practically in the clinical field. It is to be hoped that in the future extremely precise databases of all of our anatomy and physiology will be available to doctors. These data can be used for predictive models to improve diagnosis or to improve therapies or personalized treatments.En els últims anys, l'estudi de l'hemodinàmica computacional en regions vasculars anatòmicament complexes ha generat un gran interès entre els clínics. El progrés obtingut en la dinàmica de fluids computacional, en el processament d'imatges i en la computació d'alt rendiment ha permès identificar regions vasculars on poden aparèixer malalties cardiovasculars, així com predir-ne l'evolució. Actualment, la medicina utilitza un paradigma anomenat diagnòstic. En aquesta tesi s'intenta introduir en la medicina el paradigma predictiu utilitzat des de fa molts anys en l'enginyeria. Per tant, aquesta tesi té com a objectiu desenvolupar models predictius basats en indicadors de diagnòstic de patologies cardiovasculars. Tractem de predir l'evolució de l'aneurisma d'aorta abdominal, la coartació aòrtica i la malaltia coronària de forma personalitzada per a cada pacient. Per entendre com la patologia cardiovascular evolucionarà i quan suposarà un risc per a la salut, cal desenvolupar noves tecnologies mitjançant la combinació de les imatges mèdiques i la ciència computacional. Proposem uns indicadors que poden millorar el diagnòstic i predir l'evolució de la malaltia de manera més eficient que els mètodes utilitzats fins ara. En particular, es proposa una nova metodologia per al càlcul dels indicadors de diagnòstic basada en l'hemodinàmica computacional i les imatges mèdiques. Hem treballat amb dades de pacients anònims per crear una tecnologia predictiva real que ens permetrà seguir avançant en la medicina personalitzada i generar sistemes de salut més sostenibles. Però el nostre objectiu final és aconseguir un impacte en l¿àmbit clínic. Diversos grups han tractat de crear models predictius per a les patologies cardiovasculars, però encara no han començat a utilitzar-les en la pràctica clínica. El nostre objectiu és anar més enllà i obtenir variables predictives que es puguin utilitzar de forma pràctica en el camp clínic. Es pot preveure que en el futur tots els metges disposaran de bases de dades molt precises de tota la nostra anatomia i fisiologia. Aquestes dades es poden utilitzar en els models predictius per millorar el diagnòstic o per millorar teràpies o tractaments personalitzats.Postprint (published version

    Fenestrated Stent Graft Repair of Abdominal Aortic Aneurysm: Hemodynamic Analysis of the Effect of Fenestrated Stents on the Renal Arteries

    Get PDF
    Objective: We wanted to investigate the hemodynamic effect of fenestrated stents on the renal arteries with using a fluid structure interaction method. Materials and Methods: Two representative patients who each had abdominal aortic aneurysm that was treated with fenestrated stent grafts were selected for the study. 3D realistic aorta models for the main artery branches and aneurysm were generated based on the multislice CT scans from two patients with different aortic geometries. The simulated fenestrated stents were designed and modelled based on the 3D intraluminal appearance, and these were placed inside the renal artery with an intra-aortic protrusion of 5.0-7.0 mm to reflect the actual patients' treatment. The stent wire thickness was simulated with a diameter of 0.4 mm and hemodynamic analysis was performed at different cardiac cycles. Results: Our results showed that the effect of the fenestrated stent wires on the renal blood flow was minimal because the flow velocity was not significantly affected when compared to that calculated at pre-stent graft implantation, and this was despite the presence of recirculation patterns at the proximal part of the renal arteries. The wall pressure was found to be significantly decreased after fenestration, yet no significant change of the wall shear stress was noticed at post-fenestration, although the wall shear stress was shown to decrease slightly at the proximal aneurysm necks. Conclusion: Our analysis demonstrates that the hemodynamic effect of fenestrated renal stents on the renal arteries is insignificant. Further studies are needed to investigate the effect of different lengths of stent protrusion with variable stent thicknesses on the renal blood flow, and this is valuable for understanding the long-term outcomes of fenestrated repair

    Digital Twin of Cardiovascular Systems

    Get PDF
    Patient specific modelling using numerical methods is widely used in understanding diseases and disorders. It produces medical analysis based on the current state of patient’s health. Concurrently, as a parallel development, emerging data driven Artificial Intelligence (AI) has accelerated patient care. It provides medical analysis using algorithms that rely upon knowledge from larger human population data. AI systems are also known to have the capacity to provide a prognosis with overallaccuracy levels that are better than those provided by trained professionals. When these two independent and robust methods are combined, the concept of human digital twins arise. A Digital Twin is a digital replica of any given system or process. They combine knowledge from general data with subject oriented knowledge for past, current and future analyses and predictions. Assumptions made during numerical modelling are compensated using knowledge from general data. For humans, they can provide an accurate current diagnosis as well as possible future outcomes. This allows forprecautions to be taken so as to avoid further degradation of patient’s health.In this thesis, we explore primary forms of human digital twins for the cardiovascular system, that are capable of replicating various aspects of the cardiovascular system using different types of data. Since different types of medical data are available, such as images, videos and waveforms, and the kinds of analysis required may be offline or online in nature, digital twin systems should be uniquely designed to capture each type of data for different kinds of analysis. Therefore, passive, active and semi-active digital twins, as the three primary forms of digital twins, for different kinds of applications are proposed in this thesis. By the virtue of applications and the kind of data involved ineach of these applications, the performance and importance of human digital twins for the cardiovascular system are demonstrated. The idea behind these twins is to allow for the application of the digital twin concept for online analysis, offline analysis or a combination of the two in healthcare. In active digital twins active data, such as signals, is analysed online in real-time; in semi-active digital twin some of the components being analysed are active but the analysis itself is carried out offline; and finally, passive digital twins perform offline analysis of data that involves no active component.For passive digital twin, an automatic workflow to calculate Fractional Flow Reserve (FFR) is proposed and tested on a cohort of 25 patients with acceptable results. For semi-active digital twin, detection of carotid stenosis and its severity using face videos is proposed and tested with satisfactory results from one carotid stenosis patient and a small cohort of healthy adults. Finally, for the active digital twin, an enabling model is proposed using inverse analysis and its application in the detection of Abdominal Aortic Aneurysm (AAA) and its severity, with the help of a virtual patient database. This enabling model detected artificially generated AAA with an accuracy as high as 99.91% and classified its severity with acceptable accuracy of 97.79%. Further, for active digital twin, a truly active model is proposed for continuous cardiovascular state monitoring. It is tested on a small cohort of five patients from a publicly available database for three 10-minute periods, wherein this model satisfactorily replicated and forecasted patients’ cardiovascular state. In addition to the three forms of human digital twins for the cardiovascular system, an additional work on patient prioritisation in pneumonia patients for ITU care using data-driven digital twin is also proposed. The severity indices calculated by these models are assessed using the standard benchmark of Area Under Receiving Operating Characteristic Curve (AUROC). The results indicate that using these models, the ITU and mechanical ventilation can be prioritised correctly to an AUROC value as high as 0.89
    • …
    corecore