606 research outputs found

    A method for body fat composition analysis in abdominal magnetic resonance images via self-organizing map neural network

    Get PDF
    Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VAT was accomplished using a new level set method called distance regularized level set evolution (DRLSE). To evaluate the suggested method, the whole-body abdominal MRI was performed on 23 subjects, and three slices were selected for each case. Results: The results of the automatic segmentation were compared with those of the manual segmentation and previous artificial intelligent methods. According to the results, there was a significant correlation between the automatic and manual segmentation results of VAT and SAT. Conclusion: As the findings indicated, the suggested method improved detection of body fat. In this study, a fully automated abdominal adipose tissue segmentation algorithm was suggested, which used the SOM neural network and DRLSE level set algorithm. The proposed methodology was concluded to be accurate and robust with a significant advantage over the manual and previous segmentation methods in terms of speed and accuracy. © 2018, Mashhad University of Medical Sciences

    Validation of a fast method for quantification of intra-abdominal and subcutaneous adipose tissue for large-scale human studies

    Get PDF
    Central obesity is the hallmark of a number of non-inheritable disorders. The advent of imaging techniques such asMRI has allowed for a fast and accurate assessment of body fat content and distribution. However, image analysis continues to be one of the major obstacles to the use of MRI in large-scale studies. In this study we assess the validity of the recently proposed fat–muscle quantitation system (AMRATM Profiler) for the quantification of intra-abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from abdominal MR images. Abdominal MR images were acquired from 23 volunteers with a broad range of BMIs and analysed using sliceOmatic, the current gold-standard, and the AMRATM Profiler based on a non-rigid image registration of a library of segmented atlases. The results show that there was a highly significant correlation between the fat volumes generated by the two analysis methods, (Pearson correlation r = 0.97, p < 0.001), with the AMRATM Profiler analysis being significantly faster (~3 min) than the conventional sliceOmatic approach (~40 min). There was also excellent agreement between the methods for the quantification of IAAT (AMRA 4.73 ± 1.99 versus sliceOmatic 4.73 ± 1.75 l, p = 0.97). For the AMRATM Profiler analysis, the intra-observer coefficient of variation was 1.6% for IAAT and 1.1% for ASAT, the inter-observer coefficient of variationwas 1.4%for IAAT and 1.2%for ASAT, the intra-observer correlationwas 0.998 for IAAT and 0.999 for ASAT, and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate that precise and accurate measures of body fat content and distribution can be obtained in a fast and reliable form by the AMRATM Profiler, opening up the possibility of large-scale human phenotypic studies
    • …
    corecore