323 research outputs found

    A Synergistic Approach for Recovering Occlusion-Free Textured 3D Maps of Urban Facades from Heterogeneous Cartographic Data

    Get PDF
    In this paper we present a practical approach for generating an occlusion-free textured 3D map of urban facades by the synergistic use of terrestrial images, 3D point clouds and area-based information. Particularly in dense urban environments, the high presence of urban objects in front of the facades causes significant difficulties for several stages in computational building modeling. Major challenges lie on the one hand in extracting complete 3D facade quadrilateral delimitations and on the other hand in generating occlusion-free facade textures. For these reasons, we describe a straightforward approach for completing and recovering facade geometry and textures by exploiting the data complementarity of terrestrial multi-source imagery and area-based information

    3-Dimensional Building Details from Aerial Photography for Internet Maps

    Get PDF
    This paper introduces the automated characterization of real estate (real property) for Internet mapping. It proposes a processing framework to achieve this task from vertical aerial photography and associated property information. A demonstration of the feasibility of an automated solution builds on test data from the Austrian City of Graz. Information is extracted from vertical aerial photography and various data products derived from that photography in the form of a true orthophoto, a dense digital surface model and digital terrain model, and a classification of land cover. Maps of cadastral property boundaries aid in defining real properties. Our goal is to develop a table for each property with descriptive numbers about the buildings, their dimensions, number of floors, number of windows, roof shapes, impervious surfaces, garages, sheds, vegetation, presence of a basement floor, and other descriptors of interest for each and every property of a city. From aerial sources, at a pixel size of 10 cm, we show that we have obtained positional accuracies in the range of a single pixel, an accuracy of areas in the 10% range, floor counts at an accuracy of 93% and window counts at 86% accuracy. We also introduce 3D point clouds of facades and their creation from vertical aerial photography, and how these point clouds can support the definition of complex facades

    Review of remote sensing for land administration: Origins, debates, and selected cases

    Get PDF
    Conventionally, land administration—incorporating cadastres and land registration—uses ground-based survey methods. This approach can be traced over millennia. The application of photogrammetry and remote sensing is understood to be far more contemporary, only commencing deeper into the 20th century. This paper seeks to counter this view, contending that these methods are far from recent additions to land administration: successful application dates back much earlier, often complementing ground-based methods. Using now more accessible historical works, made available through archive digitisation, this paper presents an enriched and more complete synthesis of the developments of photogrammetric methods and remote sensing applied to the domain of land administration. Developments from early phototopography and aerial surveys, through to analytical photogrammetric methods, the emergence of satellite remote sensing, digital cameras, and latterly lidar surveys, UAVs, and feature extraction are covered. The synthesis illustrates how debates over the benefits of the technique are hardly new. Neither are well-meaning, although oft-flawed, comparative analyses on criteria relating to time, cost, coverage, and quality. Apart from providing this more holistic view and a timely reminder of previous work, this paper brings contemporary practical value in further demonstrating to land administration practitioners that remote sensing for data capture, and subsequent map production, are an entirely legitimate, if not essential, part of the domain. Contemporary arguments that the tools and approaches do not bring adequate accuracy for land administration purposes are easily countered by the weight of evidence. Indeed, these arguments may be considered to undermine the pragmatism inherent to the surveying discipline, traditionally an essential characteristic of the profession. That said, it is left to land administration practitioners to determine the relevance of these methods for any specific country context. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Recovering occlusion-free textured 3D maps of urban facades by a synergistic use of terrestrial images, 3D point clouds and area-based information

    Get PDF
    In this paper we present a practical approach for generating an occlusion-free textured 3D map of urban facades by the synergistic use of terrestrial images, 3D point clouds and area-based information. Particularly in dense urban environments, the high presence of urban objects in front of the facades causes significant difficulties for several stages in computational building modeling. Major challenges lie on the one hand in extracting complete 3D facade quadrilateral delimitations and on the other hand in generating occlusion-free facade textures. For these reasons, we describe a straightforward approach for completing and recovering facade geometry and textures by exploiting the data complementarity of terrestrial multi-source imagery and area-based information

    Remote Sensing for Land Administration 2.0

    Get PDF
    The reprint “Land Administration 2.0” is an extension of the previous reprint “Remote Sensing for Land Administration”, another Special Issue in Remote Sensing. This reprint unpacks the responsible use and integration of emerging remote sensing techniques into the domain of land administration, including land registration, cadastre, land use planning, land valuation, land taxation, and land development. The title was chosen as “Land Administration 2.0” in reference to both this Special Issue being the second volume on the topic “Land Administration” and the next-generation requirements of land administration including demands for 3D, indoor, underground, real-time, high-accuracy, lower-cost, and interoperable land data and information

    Towards Automated Cadastral Boundary Delineation from UAV data

    Get PDF
    This PhD research aims to design and implement a method to facilitate land rights mapping through indirect surveying techniques from UAV data. It is based on the assumption that a large portion of cadastral boundaries is physically manifested through objects such as hedges, fences, stone walls, tree lines, roads, walkways or waterways. Those visible boundaries bear the potential to be extracted with methods from photogrammetry, remote sensing and computer vision. The automatically extracted outlines require further (legal) adjudication that allows incorporating local knowledge from a human operator. The method currently being designed and developed within this PhD research aims to provide a delineation approach that includes this automated extraction combined with an interactive delineation (Figure 1). This work is part of the Horizon 2020 program of the European Union (project its4land)

    Dense Point Cloud Extraction From Oblique Imagery

    Get PDF
    With the increasing availability of low-cost digital cameras with small or medium sized sensors, more and more airborne images are available with high resolution, which enhances the possibility in establishing three dimensional models for urban areas. The high accuracy of representation of buildings in urban areas is required for asset valuation or disaster recovery. Many automatic methods for modeling and reconstruction are applied to aerial images together with Light Detection and Ranging (LiDAR) data. If LiDAR data are not provided, manual steps must be applied, which results in semi-automated technique. The automated extraction of 3D urban models can be aided by the automatic extraction of dense point clouds. The more dense the point clouds, the easier the modeling and the higher the accuracy. Also oblique aerial imagery provides more facade information than nadir images, such as building height and texture. So a method for automatic dense point cloud extraction from oblique images is desired. In this thesis, a modified workflow for the automated extraction of dense point clouds from oblique images is proposed and tested. The result reveals that this modified workflow works well and a very dense point cloud can be extracted from only two oblique images with slightly higher accuracy in flat areas than the one extracted by the original workflow. The original workflow was established by previous research at the Rochester Institute of Technology (RIT) for point cloud extraction from nadir images. For oblique images, a first modification is proposed in the feature detection part by replacing the Scale-Invariant Feature Transform (SIFT) algorithm with the Affine Scale-Invariant Feature Transform (ASIFT) algorithm. After that, in order to realize a very dense point cloud, the Semi-Global Matching (SGM) algorithm is implemented in the second modification to compute the disparity map from a stereo image pair, which can then be used to reproject pixels back to a point cloud. A noise removal step is added in the third modification. The point cloud from the modified workflow is much denser compared to the result from the original workflow. An accuracy assessment is made in the end to evaluate the point cloud extracted from the modified workflow. From the two flat areas, subsets of points are selected from both original and modified workflow, and then planes are fitted to them, respectively. The Mean Squared Error (MSE) of the points to the fitted plane is compared. The point subsets from the modified workflow have slightly lower MSEs than the ones from the original workflow, respectively. This suggests a much more dense and more accurate point cloud can lead to clear roof borders for roof extraction and improve the possibility of 3D feature detection for 3D point cloud registration
    • …
    corecore