2,241 research outputs found

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Image-Fusion for Biopsy, Intervention, and Surgical Navigation in Urology

    Get PDF

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Prosper: image and robot-guided prostate brachytherapy

    Full text link
    Brachytherapy for localized prostate cancer consists in destroying cancer by introducing iodine radioactive seeds into the gland through hollow needles. The planning of the position of the seeds and their introduction into the prostate is based on intra-operative ultrasound (US) imaging. We propose to optimize the global quality of the procedure by: i) using 3D US; ii) enhancing US data with MRI registration; iii) using a specially designed needle-insertion robot, connected to the imaging data. The imaging methods have been successfully tested on patient data while the robot accuracy has been evaluated on a realistic deformable phantom

    Multimodality Biomedical Image Registration Using Free Point Transformer Networks

    Get PDF
    We describe a point-set registration algorithm based on a novel free point transformer (FPT) network, designed for points extracted from multimodal biomedical images for registration tasks, such as those frequently encountered in ultrasound-guided interventional procedures. FPT is constructed with a global feature extractor which accepts unordered source and target point-sets of variable size. The extracted features are conditioned by a shared multilayer perceptron point transformer module to predict a displacement vector for each source point, transforming it into the target space. The point transformer module assumes no vicinity or smoothness in predicting spatial transformation and, together with the global feature extractor, is trained in a data-driven fashion with an unsupervised loss function. In a multimodal registration task using prostate MR and sparsely acquired ultrasound images, FPT yields comparable or improved results over other rigid and non-rigid registration methods. This demonstrates the versatility of FPT to learn registration directly from real, clinical training data and to generalize to a challenging task, such as the interventional application presented

    Multimodality Biomedical Image Registration using Free Point Transformer Networks

    Get PDF
    We describe a point-set registration algorithm based on a novel free point transformer (FPT) network, designed for points extracted from multimodal biomedical images for registration tasks, such as those frequently encountered in ultrasound-guided interventional procedures. FPT is constructed with a global feature extractor which accepts unordered source and target point-sets of variable size. The extracted features are conditioned by a shared multilayer perceptron point transformer module to predict a displacement vector for each source point, transforming it into the target space. The point transformer module assumes no vicinity or smoothness in predicting spatial transformation and, together with the global feature extractor, is trained in a data-driven fashion with an unsupervised loss function. In a multimodal registration task using prostate MR and sparsely acquired ultrasound images, FPT yields comparable or improved results over other rigid and non-rigid registration methods. This demonstrates the versatility of FPT to learn registration directly from real, clinical training data and to generalize to a challenging task, such as the interventional application presented.Comment: 10 pages, 4 figures. Accepted for publication at International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) workshop on Advances in Simplifying Medical UltraSound (ASMUS) 202

    Organ-focused mutual information for nonrigid multimodal registration of liver CT and Gd–EOB–DTPA-enhanced MRI

    Full text link
    Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed tomography (CT); however, the latter remains essential because of its high specificity, good performance in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The incorporation of an additional information channel containing liver segmentation information was studied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were calculated for the simulated data, and landmark-based and surface-based errors were calculated for the real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for both simulated and real datasets. Statistical significance of the difference was tested and confirmed in the simulated dataset (p < 0.01)

    Tools for improving high-dose-rate prostate cancer brachytherapy using three-dimensional ultrasound and magnetic resonance imaging

    Get PDF
    High-dose-rate brachytherapy (HDR-BT) is an interstitial technique for the treatment of intermediate and high-risk localized prostate cancer that involves placement of a radiation source directly inside the prostate using needles. Dose-escalated whole-gland treatments have led to improvements in survival, and tumour-targeted treatments may offer future improvements in therapeutic ratio. The efficacy of tumour-targeted HDR-BT depends on imaging tools to enable accurate dose delivery to prostate sub-volumes. This thesis is focused on implementing ultrasound tools to improve HDR-BT needle localization accuracy and efficiency, and evaluating dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for tumour localization. First, we implemented a device enabling sagittally-reconstructed 3D (SR3D) ultrasound, which provides sub-millimeter resolution in the needle insertion direction. We acquired SR3D and routine clinical images in a cohort of 12 consecutive eligible HDR-BT patients, with a total of 194 needles. The SR3D technique provided needle insertion depth errors within 5 mm for 93\% of needles versus 76\% for the clinical imaging technique, leading to increased precision in dose delivered to the prostate. Second, we implemented an algorithm to automatically segment multiple HDR-BT needles in a SR3D image. The algorithm was applied to the SR3D images from the first patient cohort, demonstrating mean execution times of 11.0 s per patient and successfully segmenting 82\% of needles within 3 mm. Third, we augmented SR3D imaging with live-2D sagittal ultrasound for needle tip localization. This combined technique was applied to another cohort of 10 HDR-BT patients, reducing insertion depth errors compared to routine imaging from a range of [-8.1 mm, 7.7 mm] to [-6.2 mm, 5.9 mm]. Finally, we acquired DCE-MRI in 16 patients scheduled to undergo prostatectomy, using either high spatial resolution or high temporal resolution imaging, and compared the images to whole-mount histology. The high spatial resolution images demonstrated improved high-grade cancer classification compared to the high temporal resolution images, with areas under the receiver operating characteristic curve of 0.79 and 0.70, respectively. In conclusion, we have translated and evaluated specialized imaging tools for HDR-BT which are ready to be tested in a clinical trial investigating tumour-targeted treatment
    • …
    corecore