2,460 research outputs found

    Human-document interaction systems: a new frontier for document image analysis

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.All indications show that paper documents will not cede in favour of their digital counterparts, but will instead be used increasingly in conjunction with digital information. An open challenge is how to seamlessly link the physical with the digital – how to continue taking advantage of the important affordances of paper, without missing out on digital functionality. This paper presents the authors’ experience with developing systems for Human-Document Interaction based on augmented document interfaces and examines new challenges and opportunities arising for the document image analysis field in this area. The system presented combines state of the art camera-based document image analysis techniques with a range of complementary technologies to offer fluid Human-Document Interaction. Both fixed and nomadic setups are discussed that have gone through user testing in real-life environments, and use cases are presented that span the spectrum from business to educational applications.Peer ReviewedPostprint (author's final draft

    Human interaction with digital ink : legibility measurement and structural analysis

    Get PDF
    Literature suggests that it is possible to design and implement pen-based computer interfaces that resemble the use of pen and paper. These interfaces appear to allow users freedom in expressing ideas and seem to be familiar and easy to use. Different ideas have been put forward concerning this type of interface, however despite the commonality of aims and problems faced, there does not appear to be a common approach to their design and implementation. This thesis aims to progress the development of pen-based computer interfaces that resemble the use of pen and paper. To do this, a conceptual model is proposed for interfaces that enable interaction with "digital ink". This conceptual model is used to organize and analyse the broad range of literature related to pen-based interfaces, and to identify topics that are not sufficiently addressed by published research. Two issues highlighted by the model: digital ink legibility and digital ink structuring, are then investigated. In the first investigation, methods are devised to objectively and subjectively measure the legibility of handwritten script. These methods are then piloted in experiments that vary the horizontal rendering resolution of handwritten script displayed on a computer screen. Script legibility is shown to decrease with rendering resolution, after it drops below a threshold value. In the second investigation, the clustering of digital ink strokes into words is addressed. A method of rating the accuracy of clustering algorithms is proposed: the percentage of words spoiled. The clustering error rate is found to vary among different writers, for a clustering algorithm using the geometric features of both ink strokes, and the gaps between them. The work contributes a conceptual interface model, methods of measuring digital ink legibility, and techniques for investigating stroke clustering features, to the field of digital ink interaction research

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専
    corecore