18,822 research outputs found

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    Segmentation-assisted detection of dirt impairments in archived film sequences

    Get PDF
    A novel segmentation-assisted method for film dirt detection is proposed. We exploit the fact that film dirt manifests in the spatial domain as a cluster of connected pixels whose intensity differs substantially from that of its neighborhood and we employ a segmentation-based approach to identify this type of structure. A key feature of our approach is the computation of a measure of confidence attached to detected dirt regions which can be utilized for performance fine tuning. Another important feature of our algorithm is the avoidance of the computational complexity associated with motion estimation. Our experimental framework benefits from the availability of manually derived as well as objective ground truth data obtained using infrared scanning. Our results demonstrate that the proposed method compares favorably with standard spatial, temporal and multistage median filtering approaches and provides efficient and robust detection for a wide variety of test material

    Construction of ATS Cloud Console Final Report

    Get PDF
    ATS cloud console for rapid analysis of cloud image sequence

    Utilizing Skylab data in on-going resources management programs in the state of Ohio

    Get PDF
    The author has identified the following significant results. The use of Skylab imagery for total area woodland surveys was found to be more accurate and cheaper than conventional surveys using aerial photo-plot techniques. Machine-aided (primarily density slicing) analyses of Skylab 190A and 190B color and infrared color photography demonstrated the feasibility of using such data for differentiating major timber classes including pines, hardwoods, mixed, cut, and brushland providing such analyses are made at scales of 1:24,000 and larger. Manual and machine-assisted image analysis indicated that spectral and spatial capabilities of Skylab EREP photography are adequate to distinguish most parameters of current, coal surface mining concern associated with: (1) active mining, (2) orphan lands, (3) reclaimed lands, and (4) active reclamation. Excellent results were achieved when comparing Skylab and aerial photographic interpretations of detailed surface mining features. Skylab photographs when combined with other data bases (e.g., census, agricultural land productivity, and transportation networks), provide a comprehensive, meaningful, and integrated view of major elements involved in the urbanization/encroachment process

    A cockpit of multiple measures for assessing film restoration quality

    Get PDF
    In machine vision, the idea of expressing the quality of a films by a single value is very popular. Usually this value is computed by processing a set of image features with the aim of resembling as much as pos- sible a kind of human judgment of the film quality. Since human quality assessment is a complex mech- anism involving many different perceptual aspects, we believe that such approach may scarcely provide a comprehensive analysis. Especially in the field of digital movie restoration, a single score can hardly provide reliable information about the effects of the various restoring operations. For this reason we in- troduce an alternative approach, where a set of measures, describing over time basic global and local visual properties of the film frames, is computed in an unsupervised way and delivered to expert evalu- ators for checking the restoration pipeline and results. The proposed framework can be viewed as a car or airplane cockpit , whose parameters (i.e. the computed measures) are necessary to control the machine status and performance. This cockpit, which is publicly available online, would like to support the digital restoration process and its assessment

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    Review Paper on Automatic Scratch Lines Noise Removal from Video

    Get PDF
    The digitalization and transfer of older films into high definition (HD) formats imply that high quality of restoration is necessary. Now a day?s Digital film restoration is an area under discussion of increasing interest to researchers and film archives alike. Old films, including cultural heritage masterpieces, are being digitally premastered and transferred into novel, higher quality formats and distributed through various means such as DVD, Blu-ray or HD pictures. Detection of Line scratches in old movies is a particularly difficult problem due to the variable spatiotemporal characteristics of this deficiency. Some of the main problems consist of sensitivity to noise and texture, and fake detections due to thin vertical structures belonging to the scene. Automatic finding of image damaged regions is the key to automatic video image inpainting. Vertical scratches are the common damages in the old film. As the film is a collection of number of frames arrayed together to produce a motion sequence hence it becomes a lengthy and tedious work to process any video format in any manner. Normally if any scratch or noise generated on films it remains as it is on many frames in sequence in film which can be benefitted by the removal process by initially checking noise area on earlier slide. Hence proposed system is aimed at designing and developing of line scratches detection from old films and remove it
    • …
    corecore