214 research outputs found

    Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection

    Get PDF
    Accurate pulmonary nodule detection is a crucial step in lung cancer screening. Computer-aided detection (CAD) systems are not routinely used by radiologists for pulmonary nodule detection in clinical practice despite their potential benefits. Maximum intensity projection (MIP) images improve the detection of pulmonary nodules in radiological evaluation with computed tomography (CT) scans. Inspired by the clinical methodology of radiologists, we aim to explore the feasibility of applying MIP images to improve the effectiveness of automatic lung nodule detection using convolutional neural networks (CNNs). We propose a CNN-based approach that takes MIP images of different slab thicknesses (5 mm, 10 mm, 15 mm) and 1 mm axial section slices as input. Such an approach augments the two-dimensional (2-D) CT slice images with more representative spatial information that helps discriminate nodules from vessels through their morphologies. Our proposed method achieves sensitivity of 92.67% with 1 false positive per scan and sensitivity of 94.19% with 2 false positives per scan for lung nodule detection on 888 scans in the LIDC-IDRI dataset. The use of thick MIP images helps the detection of small pulmonary nodules (3 mm-10 mm) and results in fewer false positives. Experimental results show that utilizing MIP images can increase the sensitivity and lower the number of false positives, which demonstrates the effectiveness and significance of the proposed MIP-based CNNs framework for automatic pulmonary nodule detection in CT scans. The proposed method also shows the potential that CNNs could gain benefits for nodule detection by combining the clinical procedure.Comment: Submitted to IEEE TM

    Deep learning for lung cancer on computed tomography:early detection and prognostic prediction

    Get PDF
    Lung cancer is one of the most fatal cancers in the world, the leading cause of death among both men and women. The five-year survival rate for lung cancer patients is only between 10 and 20%. However, the mortality rate can be reduced if lung cancer is diagnosed at an early stage and treated promptly. Screening trials have been established in many countries to improve early detetion of lung cancer, but it results in numerous scans that need to be evaluated, which is labor-intensive. On the other hand, when lung cancer is diagnosed at an early stage in screening, the clinical response after the treatment can vary between patients. Therefore, strong needs exist for accurate early detection and prognostic prediction of lung cancer.Deep learning recently has achieved great success in medical image analysis, especially for lung cancer. The results described in this thesis show that combining clinical procedures, deep learning techniques are feasible to assist radiologists with pulmonary nodule detection and rule out most negative scans in lung cancer screening. Besides, by integrating clinical factors and imaging features, deep learning can identify high mortality risk lung cancer patients who could benefit from adjuvant chemotherapy. With the implementation of lung cancer screening programs, more imaging and clinical data will be available, which enables deep learning to further boost the efficiency of screening procedures and lower the lung cancer mortality in the future

    Deep convolutional neural networks for multi-planar lung nodule detection: improvement in small nodule identification

    Get PDF
    Objective: In clinical practice, small lung nodules can be easily overlooked by radiologists. The paper aims to provide an efficient and accurate detection system for small lung nodules while keeping good performance for large nodules. Methods: We propose a multi-planar detection system using convolutional neural networks. The 2-D convolutional neural network model, U-net++, was trained by axial, coronal, and sagittal slices for the candidate detection task. All possible nodule candidates from the three different planes are combined. For false positive reduction, we apply 3-D multi-scale dense convolutional neural networks to efficiently remove false positive candidates. We use the public LIDC-IDRI dataset which includes 888 CT scans with 1186 nodules annotated by four radiologists. Results: After ten-fold cross-validation, our proposed system achieves a sensitivity of 94.2% with 1.0 false positive/scan and a sensitivity of 96.0% with 2.0 false positives/scan. Although it is difficult to detect small nodules (i.e. < 6 mm), our designed CAD system reaches a sensitivity of 93.4% (95.0%) of these small nodules at an overall false positive rate of 1.0 (2.0) false positives/scan. At the nodule candidate detection stage, results show that a multi-planar method is capable to detect more nodules compared to using a single plane. Conclusion: Our approach achieves good performance not only for small nodules, but also for large lesions on this dataset. This demonstrates the effectiveness and efficiency of our developed CAD system for lung nodule detection. Significance: The proposed system could provide support for radiologists on early detection of lung cancer

    MEDS-Net: Self-Distilled Multi-Encoders Network with Bi-Direction Maximum Intensity projections for Lung Nodule Detection

    Full text link
    In this study, we propose a lung nodule detection scheme which fully incorporates the clinic workflow of radiologists. Particularly, we exploit Bi-Directional Maximum intensity projection (MIP) images of various thicknesses (i.e., 3, 5 and 10mm) along with a 3D patch of CT scan, consisting of 10 adjacent slices to feed into self-distillation-based Multi-Encoders Network (MEDS-Net). The proposed architecture first condenses 3D patch input to three channels by using a dense block which consists of dense units which effectively examine the nodule presence from 2D axial slices. This condensed information, along with the forward and backward MIP images, is fed to three different encoders to learn the most meaningful representation, which is forwarded into the decoded block at various levels. At the decoder block, we employ a self-distillation mechanism by connecting the distillation block, which contains five lung nodule detectors. It helps to expedite the convergence and improves the learning ability of the proposed architecture. Finally, the proposed scheme reduces the false positives by complementing the main detector with auxiliary detectors. The proposed scheme has been rigorously evaluated on 888 scans of LUNA16 dataset and obtained a CPM score of 93.6\%. The results demonstrate that incorporating of bi-direction MIP images enables MEDS-Net to effectively distinguish nodules from surroundings which help to achieve the sensitivity of 91.5% and 92.8% with false positives rate of 0.25 and 0.5 per scan, respectively

    An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network

    Get PDF
    Producción CientíficaThe diagnosis of early-stage lung cancer is challenging due to its asymptomatic nature, especially given the repeated radiation exposure and high cost of computed tomography(CT). Examining the lung CT images to detect pulmonary nodules, especially the cell lung cancer lesions, is also tedious and prone to errors even by a specialist. This study proposes a cancer diagnostic model based on a deep learning-enabled support vector machine (SVM). The proposed computer-aided design (CAD) model identifies the physiological and pathological changes in the soft tissues of the cross-section in lung cancer lesions. The model is first trained to recognize lung cancer by measuring and comparing the selected profile values in CT images obtained from patients and control patients at their diagnosis. Then, the model is tested and validated using the CT scans of both patients and control patients that are not shown in the training phase. The study investigates 888 annotated CT scans from the publicly available LIDC/IDRI database. The proposed deep learning-assisted SVM-based model yields 94% accuracy for pulmonary nodule detection representing early-stage lung cancer. It is found superior to other existing methods including complex deep learning, simple machine learning, and the hybrid techniques used on lung CT images for nodule detection. Experimental results demonstrate that the proposed approach can greatly assist radiologists in detecting early lung cancer and facilitating the timely management of patients

    Performance of a deep learning-based lung nodule detection system as an alternative reader in a Chinese lung cancer screening program

    Get PDF
    Objective: To evaluate the performance of a deep learning-based computer-aided detection (DL-CAD) system in a Chinese low-dose CT (LDCT) lung cancer screening program. Materials and methods: One-hundred-and-eighty individuals with a lung nodule on their baseline LDCT lung cancer screening scan were randomly mixed with screenees without nodules in a 1:1 ratio (total: 360 individuals). All scans were assessed by double reading and subsequently processed by an academic DL-CAD system. The findings of double reading and the DL-CAD system were then evaluated by two senior radiologists to derive the reference standard. The detection performance was evaluated by the Free Response Operating Characteristic curve, sensitivity and false-positive (FP) rate. The senior radiologists categorized nodules according to nodule diameter, type (solid, part-solid, non-solid) and Lung-RADS. Results: The reference standard consisted of 262 nodules ≥ 4 mm in 196 individuals; 359 findings were considered false positives. The DL-CAD system achieved a sensitivity of 90.1% with 1.0 FP/scan for detection of lung nodules regardless of size or type, whereas double reading had a sensitivity of 76.0% with 0.04 FP/scan (P = 0.001). The sensitivity for detection of nodules ≥ 4 - ≤ 6 mm was significantly higher with DL-CAD than with double reading (86.3% vs. 58.9% respectively; P = 0.001). Sixty-three nodules were only identified by the DL-CAD system, and 27 nodules only found by double reading. The DL-CAD system reached similar performance compared to double reading in Lung-RADS 3 (94.3% vs. 90.0%, P = 0.549) and Lung-RADS 4 nodules (100.0% vs. 97.0%, P = 1.000), but showed a higher sensitivity in Lung-RADS 2 (86.2% vs. 65.4%, P < 0.001). Conclusions: The DL-CAD system can accurately detect pulmonary nodules on LDCT, with an acceptable false-positive rate of 1 nodule per scan and has higher detection performance than double reading. This DL-CAD system may assist radiologists in nodule detection in LDCT lung cancer screening

    Learning Algorithms for Fat Quantification and Tumor Characterization

    Get PDF
    Obesity is one of the most prevalent health conditions. About 30% of the world\u27s and over 70% of the United States\u27 adult populations are either overweight or obese, causing an increased risk for cardiovascular diseases, diabetes, and certain types of cancer. Among all cancers, lung cancer is the leading cause of death, whereas pancreatic cancer has the poorest prognosis among all major cancers. Early diagnosis of these cancers can save lives. This dissertation contributes towards the development of computer-aided diagnosis tools in order to aid clinicians in establishing the quantitative relationship between obesity and cancers. With respect to obesity and metabolism, in the first part of the dissertation, we specifically focus on the segmentation and quantification of white and brown adipose tissue. For cancer diagnosis, we perform analysis on two important cases: lung cancer and Intraductal Papillary Mucinous Neoplasm (IPMN), a precursor to pancreatic cancer. This dissertation proposes an automatic body region detection method trained with only a single example. Then a new fat quantification approach is proposed which is based on geometric and appearance characteristics. For the segmentation of brown fat, a PET-guided CT co-segmentation method is presented. With different variants of Convolutional Neural Networks (CNN), supervised learning strategies are proposed for the automatic diagnosis of lung nodules and IPMN. In order to address the unavailability of a large number of labeled examples required for training, unsupervised learning approaches for cancer diagnosis without explicit labeling are proposed. We evaluate our proposed approaches (both supervised and unsupervised) on two different tumor diagnosis challenges: lung and pancreas with 1018 CT and 171 MRI scans respectively. The proposed segmentation, quantification and diagnosis approaches explore the important adiposity-cancer association and help pave the way towards improved diagnostic decision making in routine clinical practice

    Deep learning-based pulmonary nodule detection:Effect of slab thickness in maximum intensity projections at the nodule candidate detection stage

    Get PDF
    BACKGROUND AND OBJECTIVE: To investigate the effect of the slab thickness in maximum intensity projections (MIPs) on the candidate detection performance of a deep learning-based computer-aided detection (DL-CAD) system for pulmonary nodule detection in CT scans. METHODS: The public LUNA16 dataset includes 888 CT scans with 1186 nodules annotated by four radiologists. From those scans, MIP images were reconstructed with slab thicknesses of 5 to 50 mm (at 5 mm intervals) and 3 to 13 mm (at 2 mm intervals). The architecture in the nodule candidate detection part of the DL-CAD system was trained separately using MIP images with various slab thicknesses. Based on ten-fold cross-validation, the sensitivity and the F2 score were determined to evaluate the performance of using each slab thickness at the nodule candidate detection stage. The free-response receiver operating characteristic (FROC) curve was used to assess the performance of the whole DL-CAD system that took the results combined from 16 MIP slab thickness settings. RESULTS: At the nodule candidate detection stage, the combination of results from 16 MIP slab thickness settings showed a high sensitivity of 98.0% with 46 false positives (FPs) per scan. Regarding a single MIP slab thickness of 10 mm, the highest sensitivity of 90.0% with 8 FPs/scan was reached before false positive reduction. The sensitivity increased (82.8% to 90.0%) for slab thickness of 1 to 10 mm and decreased (88.7% to 76.6%) for slab thickness of 15-50 mm. The number of FPs was decreasing with increasing slab thickness, but was stable at 5 FPs/scan at a slab thickness of 30 mm or more. After false positive reduction, the DL-CAD system, utilizing 16 MIP slab thickness settings, had the sensitivity of 94.4% with 1 FP/scan. CONCLUSIONS: The utilization of multi-MIP images could improve the performance at the nodule candidate detection stage, even for the whole DL-CAD system. For a single slab thickness of 10 mm, the highest sensitivity for pulmonary nodule detection was reached at the nodule candidate detection stage, similar to the slab thickness usually applied by radiologists
    • …
    corecore