19 research outputs found

    Deep learning segmentation of fibrous cap in intravascular optical coherence tomography images

    Full text link
    Thin-cap fibroatheroma (TCFA) is a prominent risk factor for plaque rupture. Intravascular optical coherence tomography (IVOCT) enables identification of fibrous cap (FC), measurement of FC thicknesses, and assessment of plaque vulnerability. We developed a fully-automated deep learning method for FC segmentation. This study included 32,531 images across 227 pullbacks from two registries. Images were semi-automatically labeled using our OCTOPUS with expert editing using established guidelines. We employed preprocessing including guidewire shadow detection, lumen segmentation, pixel-shifting, and Gaussian filtering on raw IVOCT (r,theta) images. Data were augmented in a natural way by changing theta in spiral acquisitions and by changing intensity and noise values. We used a modified SegResNet and comparison networks to segment FCs. We employed transfer learning from our existing much larger, fully-labeled calcification IVOCT dataset to reduce deep-learning training. Overall, our method consistently delivered better FC segmentation results (Dice: 0.837+/-0.012) than other deep-learning methods. Transfer learning reduced training time by 84% and reduced the need for more training samples. Our method showed a high level of generalizability, evidenced by highly-consistent segmentations across five-fold cross-validation (sensitivity: 85.0+/-0.3%, Dice: 0.846+/-0.011) and the held-out test (sensitivity: 84.9%, Dice: 0.816) sets. In addition, we found excellent agreement of FC thickness with ground truth (2.95+/-20.73 um), giving clinically insignificant bias. There was excellent reproducibility in pre- and post-stenting pullbacks (average FC angle: 200.9+/-128.0 deg / 202.0+/-121.1 deg). Our method will be useful for multiple research purposes and potentially for planning stent deployments that avoid placing a stent edge over an FC.Comment: 24 pages, 9 figures, 2 tables, 2 supplementary figures, 3 supplementary table

    Automated classification of coronary plaque calcification in OCT pullbacks with 3D deep neural networks

    Get PDF
    Significance: Detection and characterization of coronary atherosclerotic plaques often need reviews of a large number of optical coherence tomography (OCT) imaging slices to make a clinical decision. However, it is a challenge to manually review all the slices and consider the interrelationship between adjacent slices. Approach: Inspired by the recent success of deep convolutional network on the classification of medical images, we proposed a ResNet-3D network for classification of coronary plaque calcification in OCT pullbacks. The ResNet-3D network was initialized with a trained ResNet-50 network and a three-dimensional convolution filter filled with zeros padding and non-zeros padding with a convolutional filter. To retrain ResNet-50, we used a dataset of ∼4860 OCT images, derived by 18 entire pullbacks from different patients. In addition, we investigated a two-phase training method to address the data imbalance. For an improved performance, we evaluated different input sizes for the ResNet-3D network, such as 3, 5, and 7 OCT slices. Furthermore, we integrated all ResNet-3D results by majority voting. Results: A comparative analysis proved the effectiveness of the proposed ResNet-3D networks against ResNet-2D network in the OCT dataset. The classification performance (F1-scores  =  94  %   for non-zeros padding and F1-score  =  96  %   for zeros padding) demonstrated the potential of convolutional neural networks (CNNs) in classifying plaque calcification. Conclusions: This work may provide a foundation for further work in extending the CNN to voxel segmentation, which may lead to a supportive diagnostic tool for assessment of coronary plaque vulnerability

    Automated analysis of fibrous cap in intravascular optical coherence tomography images of coronary arteries

    Full text link
    Thin-cap fibroatheroma (TCFA) and plaque rupture have been recognized as the most frequent risk factor for thrombosis and acute coronary syndrome. Intravascular optical coherence tomography (IVOCT) can identify TCFA and assess cap thickness, which provides an opportunity to assess plaque vulnerability. We developed an automated method that can detect lipidous plaque and assess fibrous cap thickness in IVOCT images. This study analyzed a total of 4,360 IVOCT image frames of 77 lesions among 41 patients. To improve segmentation performance, preprocessing included lumen segmentation, pixel-shifting, and noise filtering on the raw polar (r, theta) IVOCT images. We used the DeepLab-v3 plus deep learning model to classify lipidous plaque pixels. After lipid detection, we automatically detected the outer border of the fibrous cap using a special dynamic programming algorithm and assessed the cap thickness. Our method provided excellent discriminability of lipid plaque with a sensitivity of 85.8% and A-line Dice coefficient of 0.837. By comparing lipid angle measurements between two analysts following editing of our automated software, we found good agreement by Bland-Altman analysis (difference 6.7+/-17 degree; mean 196 degree). Our method accurately detected the fibrous cap from the detected lipid plaque. Automated analysis required a significant modification for only 5.5% frames. Furthermore, our method showed a good agreement of fibrous cap thickness between two analysts with Bland-Altman analysis (4.2+/-14.6 micron; mean 175 micron), indicating little bias between users and good reproducibility of the measurement. We developed a fully automated method for fibrous cap quantification in IVOCT images, resulting in good agreement with determinations by analysts. The method has great potential to enable highly automated, repeatable, and comprehensive evaluations of TCFAs.Comment: 18 pages, 9 figure

    Feasibility of Colon Cancer Detection in Confocal Laser Microscopy Images Using Convolution Neural Networks

    Full text link
    Histological evaluation of tissue samples is a typical approach to identify colorectal cancer metastases in the peritoneum. For immediate assessment, reliable and real-time in-vivo imaging would be required. For example, intraoperative confocal laser microscopy has been shown to be suitable for distinguishing organs and also malignant and benign tissue. So far, the analysis is done by human experts. We investigate the feasibility of automatic colon cancer classification from confocal laser microscopy images using deep learning models. We overcome very small dataset sizes through transfer learning with state-of-the-art architectures. We achieve an accuracy of 89.1% for cancer detection in the peritoneum which indicates viability as an intraoperative decision support system.Comment: Accepted at BVM Workshop 201
    corecore