231 research outputs found

    Automatic phase prediction from low-level surgical activities

    Get PDF
    Purpose: Analyzing surgical activities has received a growing interest in recent years. Several methods have been proposed to identify surgical activities and surgical phases from data acquired in operating rooms. These context-aware systems have multiple applications including: supporting the surgical team during the intervention, improving the automatic monitoring, designing new teaching paradigms. Methods: In this paper, we use low-level recordings of the activities that are performed by a surgeon to automatically predict the current (high-level) phase of the surgery. We augment a decision tree algorithm with the ability to consider the local context of the surgical activities and a hierarchical clustering algorithm. Results: Experiments were performed on 22 surgeries of lumbar disk herniation. We obtained an overall precision of 0.843 in detecting phases of 51,489 single activities. We also assess the robustness of the method with regard to noise. Conclusion: We show that using the local context allows us to improve the results compared with methods only considering single activity. Experiments show that the use of the local context makes our method very robust to noise and that clustering the input data first improves the predictions

    Current and Future Advances in Surgical Therapy for Pituitary Adenoma

    Get PDF
    The vital physiological role of the pituitary gland, alongside its proximal critical neurovascular structures means pituitary adenomas cause significant morbidity or mortality. Whilst enormous advancements have been made in the surgical care of pituitary adenomas, treatment failure and recurrence remain challenges. To meet these clinical challenges, there has been an enormous expansion of novel medical technologies (e.g. endoscopy, advanced imaging, artificial intelligence). These innovations have the potential to benefit each step of the patient journey, and ultimately, drive improved outcomes. Earlier and more accurate diagnosis addresses this in part. Analysis of novel patient data sets, such as automated facial analysis or natural language processing of medical records holds potential in achieving an earlier diagnosis. After diagnosis, treatment decision-making and planning will benefit from radiomics and multimodal machine learning models. Surgical safety and effectiveness will be transformed by smart simulation methods for trainees. Next-generation imaging techniques and augmented reality will enhance surgical planning and intraoperative navigation. Similarly, the future armamentarium of pituitary surgeons, including advanced optical devices, smart instruments and surgical robotics, will augment the surgeon's abilities. Intraoperative support to team members will benefit from a surgical data science approach, utilising machine learning analysis of operative videos to improve patient safety and orientate team members to a common workflow. Postoperatively, early detection of individuals at risk of complications and prediction of treatment failure through neural networks of multimodal datasets will support earlier intervention, safer hospital discharge, guide follow-up and adjuvant treatment decisions. Whilst advancements in pituitary surgery hold promise to enhance the quality of care, clinicians must be the gatekeepers of technological translation, ensuring systematic assessment of risk and benefit. In doing so, the synergy between these innovations can be leveraged to drive improved outcomes for patients of the future

    Prospects for Theranostics in Neurosurgical Imaging: Empowering Confocal Laser Endomicroscopy Diagnostics via Deep Learning

    Get PDF
    Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging technology that has the potential to increase intraoperative precision, extend resection, and tailor surgery for malignant invasive brain tumors because of its subcellular dimension resolution. Despite its promising diagnostic potential, interpreting the gray tone fluorescence images can be difficult for untrained users. In this review, we provide a detailed description of bioinformatical analysis methodology of CLE images that begins to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, and surgical observation into a conclusionary system within the concept of theranostics. We present an overview and discuss deep learning models for automatic detection of the diagnostic CLE images and discuss various training regimes and ensemble modeling effect on the power of deep learning predictive models. Two major approaches reviewed in this paper include the models that can automatically classify CLE images into diagnostic/nondiagnostic, glioma/nonglioma, tumor/injury/normal categories and models that can localize histological features on the CLE images using weakly supervised methods. We also briefly review advances in the deep learning approaches used for CLE image analysis in other organs. Significant advances in speed and precision of automated diagnostic frame selection would augment the diagnostic potential of CLE, improve operative workflow and integration into brain tumor surgery. Such technology and bioinformatics analytics lend themselves to improved precision, personalization, and theranostics in brain tumor treatment.Comment: See the final version published in Frontiers in Oncology here: https://www.frontiersin.org/articles/10.3389/fonc.2018.00240/ful

    Situation Interpretation for Knowledge- and Model Based Laparoscopic Surgery

    Get PDF
    To manage the influx of information into surgical practice, new man-machine interaction methods are necessary to prevent information overflow. This work presents an approach to automatically segment surgeries into phases and select the most appropriate pieces of information for the current situation. This way, assistance systems can adopt themselves to the needs of the surgeon and not the other way around

    Confocal Laser Endomicroscopy Image Analysis with Deep Convolutional Neural Networks

    Get PDF
    abstract: Rapid intraoperative diagnosis of brain tumors is of great importance for planning treatment and guiding the surgeon about the extent of resection. Currently, the standard for the preliminary intraoperative tissue analysis is frozen section biopsy that has major limitations such as tissue freezing and cutting artifacts, sampling errors, lack of immediate interaction between the pathologist and the surgeon, and time consuming. Handheld, portable confocal laser endomicroscopy (CLE) is being explored in neurosurgery for its ability to image histopathological features of tissue at cellular resolution in real time during brain tumor surgery. Over the course of examination of the surgical tumor resection, hundreds to thousands of images may be collected. The high number of images requires significant time and storage load for subsequent reviewing, which motivated several research groups to employ deep convolutional neural networks (DCNNs) to improve its utility during surgery. DCNNs have proven to be useful in natural and medical image analysis tasks such as classification, object detection, and image segmentation. This thesis proposes using DCNNs for analyzing CLE images of brain tumors. Particularly, it explores the practicality of DCNNs in three main tasks. First, off-the shelf DCNNs were used to classify images into diagnostic and non-diagnostic. Further experiments showed that both ensemble modeling and transfer learning improved the classifier’s accuracy in evaluating the diagnostic quality of new images at test stage. Second, a weakly-supervised learning pipeline was developed for localizing key features of diagnostic CLE images from gliomas. Third, image style transfer was used to improve the diagnostic quality of CLE images from glioma tumors by transforming the histology patterns in CLE images of fluorescein sodium-stained tissue into the ones in conventional hematoxylin and eosin-stained tissue slides. These studies suggest that DCNNs are opted for analysis of CLE images. They may assist surgeons in sorting out the non-diagnostic images, highlighting the key regions and enhancing their appearance through pattern transformation in real time. With recent advances in deep learning such as generative adversarial networks and semi-supervised learning, new research directions need to be followed to discover more promises of DCNNs in CLE image analysis.Dissertation/ThesisDoctoral Dissertation Neuroscience 201

    Endoscopy

    Get PDF
    Endoscopy is a fast moving field, and new techniques are continuously emerging. In recent decades, endoscopy has evolved and branched out from a diagnostic modality to enhanced video and computer assisting imaging with impressive interventional capabilities. The modern endoscopy has seen advances not only in types of endoscopes available, but also in types of interventions amenable to the endoscopic approach. To date, there are a lot more developments that are being trialed. Modern endoscopic equipment provides physicians with the benefit of many technical advances. Endoscopy is an effective and safe procedure even in special populations including pediatric patients and renal transplant patients. It serves as the tool for diagnosis and therapeutic interventions of many organs including gastrointestinal tract, head and neck, urinary tract and others

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Intraoperative process monitoring using generalized surgical process models

    Get PDF
    Der Chirurg in einem modernen Operationssaal kann auf die Funktionen einer Vielzahl technischer, seine Arbeit unterstützender, Geräte zugreifen. Diese Geräte und damit auch die Funktionen, die diese zur Verfügung stellen, sind nur unzureichend miteinander vernetzt. Die unzureichende Interoperabilität der Geräte bezieht sich dabei nicht nur auf den Austausch von Daten untereinander, sondern auch auf das Fehlen eines zentralen Wissens über den gesamten Ablauf des chirurgischen Prozesses. Es werden daher Systeme benötigt, die Prozessmodelle verarbeiten und damit globales Wissen über den Prozess zur Verfügung stellen können. Im Gegensatz zu den meisten Prozessen, die in der Wirtschaft durch Workflow Management-Systeme (WfMS) unterstützt werden, ist der chirurgische Prozess durch eine hohe Variabilität gekennzeichnet. Mittlerweile gibt es viele Ansätze feingranulare, hochformalisierte Modelle des chirurgischen Prozesses zu erstellen. In dieser Arbeit wird zum einen die Qualität eines, auf patienten individuellen Eingriffen basierenden, generalisierten Modells hinsichtlich der Abarbeitung durch ein WfMS untersucht, zum anderen werden die Voraussetzungen die, die vorgelagerten Systeme erfüllen müssen geprüft. Es wird eine Aussage zur Abbruchrate der Pfadverfolgung im generalisierten Modell gemacht, das durch eine unterschiedliche Anzahl von patientenindividuellen Modellen erstellt wurde. Zudem wird die Erfolgsrate zum Wiederfinden des Prozesspfades im Modell ermittelt. Ausserdem werden die Anzahl der benötigten Schritte zumWiederfinden des Prozesspfades im Modell betrachtet.:List of Figures iv List of Tables vi 1 Introduction 1 1.1 Motivation 1 1.2 Problems and objectives 3 2 State of research 6 2.1 Definitions of terms 6 2.1.1 Surgical process 6 2.1.2 Surgical Process Model 7 2.1.3 gSPM and surgical workflow 7 2.1.4 Surgical workflow management system 8 2.1.5 Summary 9 2.2 Workflow Management Systems 10 2.2.1 Agfa HealthCare - ORBIS 10 2.2.2 Siemens Clinical Solutions - Soarian 10 2.2.3 Karl Storz - ORchestrion 10 2.2.4 YAWL BPM 11 2.3 Sensor systems 12 2.3.1 Sensors according to DIN1319 13 2.3.2 Video-based sensor technology 14 2.3.3 Human-based sensor technology 15 2.3.4 Summary 15 2.4 Process model 15 2.4.1 Top-Down 15 2.4.2 Bottom-Up 17 2.4.3 Summary 18 2.5 Methods for creating the ICCAS process model 18 2.5.1 Recording of the iSPMs 18 2.5.2 Creation of the gSPMs 20 2.6 Summary 21 3 Model-based design of workflow schemas 23 3.1 Abstract 24 3.2 Introduction 25 3.3 Model driven design of surgical workflow schemata 27 3.3.1 Recording of patient individual surgical process models 27 3.3.2 Generating generalized SPM from iSPMs 27 3.3.3 Transforming gSPM into workflow schemata 28 3.4 Summary and Outlook 30 4 Model-based validation of workflow schemas 31 4.1 Abstract 32 4.2 Introduction 33 4.3 Methods 36 4.3.1 Surgical Process Modeling 36 4.3.2 Workflow Schema Generation 38 4.3.3 The SurgicalWorkflow Management and Simulation System 40 4.3.4 System Validation Study Design 42 4.4 Results 44 4.5 Discussion 47 4.6 Conclusion 50 4.7 Acknowledgments 51 5 Influence of missing sensor information 52 5.1 Abstract 53 5.2 Introduction 54 5.3 Methodology 57 5.3.1 Surgical process modeling 57 5.3.2 Test system 59 5.3.3 System evaluation study design 61 5.4 Results 63 5.5 Discussion 66 5.6 Conclusion 68 5.7 Acknowledgments 68 5.8 Conflict of interest 68 6 Summary and outlook 69 6.1 Summary 69 6.2 Outlook 70 Bibliography 7

    Segmentierung medizinischer Bilddaten und bildgestĂĽtzte intraoperative Navigation

    Get PDF
    Die Entwicklung von Algorithmen zur automatischen oder semi-automatischen Verarbeitung von medizinischen Bilddaten hat in den letzten Jahren mehr und mehr an Bedeutung gewonnen. Das liegt zum einen an den immer besser werdenden medizinischen Aufnahmemodalitäten, die den menschlichen Körper immer feiner virtuell abbilden können. Zum anderen liegt dies an der verbesserten Computerhardware, die eine algorithmische Verarbeitung der teilweise im Gigabyte-Bereich liegenden Datenmengen in einer vernünftigen Zeit erlaubt. Das Ziel dieser Habilitationsschrift ist die Entwicklung und Evaluation von Algorithmen für die medizinische Bildverarbeitung. Insgesamt besteht die Habilitationsschrift aus einer Reihe von Publikationen, die in drei übergreifende Themenbereiche gegliedert sind: -Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen -Experimentelle Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen -Navigation zur Unterstützung intraoperativer Therapien Im Bereich Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen wurden verschiedene graphbasierte Algorithmen in 2D und 3D entwickelt, die einen gerichteten Graphen mittels einer Vorlage aufbauen. Dazu gehört die Bildung eines Algorithmus zur Segmentierung von Wirbeln in 2D und 3D. In 2D wird eine rechteckige und in 3D eine würfelförmige Vorlage genutzt, um den Graphen aufzubauen und das Segmentierungsergebnis zu berechnen. Außerdem wird eine graphbasierte Segmentierung von Prostatadrüsen durch eine Kugelvorlage zur automatischen Bestimmung der Grenzen zwischen Prostatadrüsen und umliegenden Organen vorgestellt. Auf den vorlagenbasierten Algorithmen aufbauend, wurde ein interaktiver Segmentierungsalgorithmus, der einem Benutzer in Echtzeit das Segmentierungsergebnis anzeigt, konzipiert und implementiert. Der Algorithmus nutzt zur Segmentierung die verschiedenen Vorlagen, benötigt allerdings nur einen Saatpunkt des Benutzers. In einem weiteren Ansatz kann der Benutzer die Segmentierung interaktiv durch zusätzliche Saatpunkte verfeinern. Dadurch wird es möglich, eine semi-automatische Segmentierung auch in schwierigen Fällen zu einem zufriedenstellenden Ergebnis zu führen. Im Bereich Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen wurden verschiedene frei verfügbare Segmentierungsalgorithmen anhand von Patientendaten aus der klinischen Routine getestet. Dazu gehörte die Evaluierung der semi-automatischen Segmentierung von Hirntumoren, zum Beispiel Hypophysenadenomen und Glioblastomen, mit der frei verfügbaren Open Source-Plattform 3D Slicer. Dadurch konnte gezeigt werden, wie eine rein manuelle Schicht-für-Schicht-Vermessung des Tumorvolumens in der Praxis unterstützt und beschleunigt werden kann. Weiterhin wurde die Segmentierung von Sprachbahnen in medizinischen Aufnahmen von Hirntumorpatienten auf verschiedenen Plattformen evaluiert. Im Bereich Navigation zur Unterstützung intraoperativer Therapien wurden Softwaremodule zum Begleiten von intra-operativen Eingriffen in verschiedenen Phasen einer Behandlung (Therapieplanung, Durchführung, Kontrolle) entwickelt. Dazu gehört die erstmalige Integration des OpenIGTLink-Netzwerkprotokolls in die medizinische Prototyping-Plattform MeVisLab, die anhand eines NDI-Navigationssystems evaluiert wurde. Außerdem wurde hier ebenfalls zum ersten Mal die Konzeption und Implementierung eines medizinischen Software-Prototypen zur Unterstützung der intraoperativen gynäkologischen Brachytherapie vorgestellt. Der Software-Prototyp enthielt auch ein Modul zur erweiterten Visualisierung bei der MR-gestützten interstitiellen gynäkologischen Brachytherapie, welches unter anderem die Registrierung eines gynäkologischen Brachytherapie-Instruments in einen intraoperativen Datensatz einer Patientin ermöglichte. Die einzelnen Module führten zur Vorstellung eines umfassenden bildgestützten Systems für die gynäkologische Brachytherapie in einem multimodalen Operationssaal. Dieses System deckt die prä-, intra- und postoperative Behandlungsphase bei einer interstitiellen gynäkologischen Brachytherapie ab
    • …
    corecore