1,504 research outputs found

    Hacia el modelado 3d de tumores cerebrales mediante endoneurosonografía y redes neuronales

    Get PDF
    Las cirugías mínimamente invasivas se han vuelto populares debido a que implican menos riesgos con respecto a las intervenciones tradicionales. En neurocirugía, las tendencias recientes sugieren el uso conjunto de la endoscopia y el ultrasonido, técnica llamada endoneurosonografía (ENS), para la virtualización 3D de las estructuras del cerebro en tiempo real. La información ENS se puede utilizar para generar modelos 3D de los tumores del cerebro durante la cirugía. En este trabajo, presentamos una metodología para el modelado 3D de tumores cerebrales con ENS y redes neuronales. Específicamente, se estudió el uso de mapas auto-organizados (SOM) y de redes neuronales tipo gas (NGN). En comparación con otras técnicas, el modelado 3D usando redes neuronales ofrece ventajas debido a que la morfología del tumor se codifica directamente sobre los pesos sinápticos de la red, no requiere ningún conocimiento a priori y la representación puede ser desarrollada en dos etapas: entrenamiento fuera de línea y adaptación en línea. Se realizan pruebas experimentales con maniquíes médicos de tumores cerebrales. Al final del documento, se presentan los resultados del modelado 3D a partir de una base de datos ENS.Minimally invasive surgeries have become popular because they reduce the typical risks of traditional interventions. In neurosurgery, recent trends suggest the combined use of endoscopy and ultrasound (endoneurosonography or ENS) for 3D virtualization of brain structures in real time. The ENS information can be used to generate 3D models of brain tumors during a surgery. This paper introduces a methodology for 3D modeling of brain tumors using ENS and unsupervised neural networks. The use of self-organizing maps (SOM) and neural gas networks (NGN) is particularly studied. Compared to other techniques, 3D modeling using neural networks offers advantages, since tumor morphology is directly encoded in synaptic weights of the network, no a priori knowledge is required, and the representation can be developed in two stages: off-line training and on-line adaptation. Experimental tests were performed using virtualized phantom brain tumors. At the end of the paper, the results of 3D modeling from an ENS database are presented

    ACTS in Need: Automatic Configuration Tuning with Scalability Guarantees

    Full text link
    To support the variety of Big Data use cases, many Big Data related systems expose a large number of user-specifiable configuration parameters. Highlighted in our experiments, a MySQL deployment with well-tuned configuration parameters achieves a peak throughput as 12 times much as one with the default setting. However, finding the best setting for the tens or hundreds of configuration parameters is mission impossible for ordinary users. Worse still, many Big Data applications require the support of multiple systems co-deployed in the same cluster. As these co-deployed systems can interact to affect the overall performance, they must be tuned together. Automatic configuration tuning with scalability guarantees (ACTS) is in need to help system users. Solutions to ACTS must scale to various systems, workloads, deployments, parameters and resource limits. Proposing and implementing an ACTS solution, we demonstrate that ACTS can benefit users not only in improving system performance and resource utilization, but also in saving costs and enabling fairer benchmarking

    Autonomic management of virtualized resources in cloud computing

    Get PDF
    The last five years have witnessed a rapid growth of cloud computing in business, governmental and educational IT deployment. The success of cloud services depends critically on the effective management of virtualized resources. A key requirement of cloud management is the ability to dynamically match resource allocations to actual demands, To this end, we aim to design and implement a cloud resource management mechanism that manages underlying complexity, automates resource provisioning and controls client-perceived quality of service (QoS) while still achieving resource efficiency. The design of an automatic resource management centers on two questions: when to adjust resource allocations and how much to adjust. In a cloud, applications have different definitions on capacity and cloud dynamics makes it difficult to determine a static resource to performance relationship. In this dissertation, we have proposed a generic metric that measures application capacity, designed model-independent and adaptive approaches to manage resources and built a cloud management system scalable to a cluster of machines. To understand web system capacity, we propose to use a metric of productivity index (PI), which is defined as the ratio of yield to cost, to measure the system processing capability online. PI is a generic concept that can be applied to different levels to monitor system progress in order to identify if more capacity is needed. We applied the concept of PI to the problem of overload prevention in multi-tier websites. The overload predictor built on the PI metric shows more accurate and responsive overload prevention compared to conventional approaches. To address the issue of the lack of accurate server model, we propose a model-independent fuzzy control based approach for CPU allocation. For adaptive and stable control performance, we embed the controller with self-tuning output amplification and flexible rule selection. Finally, we build a QoS provisioning framework that supports multi-objective QoS control and service differentiation. Experiments on a virtual cluster with two service classes show the effectiveness of our approach in both performance and power control. To address the problems of complex interplay between resources and process delays in fine-grained multi-resource allocation, we consider capacity management as a decision-making problem and employ reinforcement learning (RL) to optimize the process. The optimization depends on the trial-and-error interactions with the cloud system. In order to improve the initial management performance, we propose a model-based RL algorithm. The neural network based environment model, which is learned from previous management history, generates simulated resource allocations for the RL agent. Experiment results on heterogeneous applications show that our approach makes efficient use of limited interactions and find near optimal resource configurations within 7 steps. Finally, we present a distributed reinforcement learning approach to the cluster-wide cloud resource management. We decompose the cluster-wide resource allocation problem into sub-problems concerning individual VM resource configurations. The cluster-wide allocation is optimized if individual VMs meet their SLA with a high resource utilization. For scalability, we develop an efficient reinforcement learning approach with continuous state space. For adaptability, we use VM low-level runtime statistics to accommodate workload dynamics. Prototyped in a iBalloon system, the distributed learning approach successfully manages 128 VMs on a 16-node close correlated cluster

    Adaptable Service Oriented Infrastructure Provisioning with Lightweight Containers Virtualization Technology

    Get PDF
    Modern computing infrastructures should enable realization of converged provisioning and governance operations on virtualized computing, storage and network resources used on behalf of users' workloads. These workloads must have ensured sufficient access to the resources to satisfy required QoS. This requires flexible platforms providing functionality for construction, activation and governance of Runtime Infrastructure which can be realized according to Service Oriented Infrastructure (SOI) paradigm. Implementation of the SOI management framework requires definition of flexible architecture and utilization of advanced software engineering and policy-based techniques. The paper presents an Adaptable SOI Provisioning Platform which supports adaptable SOI provisioning with lightweight virtualization, compliant with the structured process model suitable for construction, activation and governance of IT environments. The requirements, architecture and implementation of the platform are all discussed. Practical usage of the platform is presented on the basis of a complex case study for provisioning JEE middleware on top of the Solaris 10 lightweight virtualization platform

    A SECURE ENERGY EFFICIENT VM PREDICTION AND MIGRATION FRAMEWORK FOR OVERCOMMITED CLOUDS

    Get PDF
    Propose an included, energy efficient, resource allocation framework for overcommitted clouds. The concord makes massive energy investments by 1) minimizing Physical Machine overload occurrences via virtual machine resource usage monitoring and prophecy, and 2) reducing the number of active PMs via efficient VM relocation and residency. Using real Google data consisting of a 29 day traces collected from a crowd together contain more than 12K PMs, we show that our proposed framework outperforms existing overload avoidance techniques and prior VM migration strategies by plummeting the number of unexpected overloads, minimizing migration overhead, increasing resource utilization, and reducing cloud energy consumption.&nbsp

    On Autonomic HPC Clouds

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015.The long tail of science using HPC facilities is looking nowadays to instant available HPC Clouds as a viable alternative to the long waiting queues of supercomputing centers. While the name of HPC Cloud is suggesting a Cloud service, the current HPC-as-a-Service is mainly an offer of bar metal, better named cluster-on-demand. The elasticity and virtualization benefits of the Clouds are not exploited by HPC-as-a-Service. In this paper we discuss how the HPC Cloud offer can be improved from a particular point of view, of automation. After a reminder of the characteristics of the Autonomic Cloud, we project the requirements and expectations to what we name Autonomic HPC Clouds. Finally, we point towards the expected results of the latest research and development activities related to the topics that were identified.The work related to Autonomic HPC Clouds is supported by the European Commission under grant agreement H2020-6643946 (CloudLightning). The CLoudLightning project proposal was prepared by eight partner institutions, three of them as earlier partners in the COST Action IC1305 NESUS, benefiting from its inputs for the proposal. The section related to Autonomic Clouds is supported by the Romanian UEFISCDI under grant agreement PN-II-ID-PCE-2011- 3-0260 (AMICAS)
    corecore