1,069 research outputs found

    Classification of ductile cast iron specimens based on image analysis and support vector machine

    Get PDF
    The ductile irons discovery in 1948 gave a new lease on life to the cast iron family. In fact, these cast irons are characterized both by a high castability and by high toughness values, combining cast irons and steel good properties. The high mechanical properties (especially ductility) are mainly due to the peculiar graphite elements shape: thanks to the addition of some elements like Mg, Ca, Ce, graphite elements shape can be near to spheres (nodules) instead to lamellae as in "normal" grey cast irons. In this work, the problem of classification of ductile cast irons specimens is addressed; first the nodules present in each specimen are identified determining their morphological shapes. These characteristics are suitable used to extract global features of the specimen. Then it is outlined a procedure to train a classifier based of these properties

    Classification of induced magnetic field signals for the microstructural characterization of sigma phase in duplex stainless steels

    Get PDF
    Duplex stainless steels present excellent mechanical and corrosion resistance properties.However, when heat treated at temperatures above 600 ºC, the undesirable tertiary sigma phaseis formed. This phase presents high hardness, around 900 HV, and it is rich in chromium, thematerial toughness being compromised when the amount of this phase is not less than 4%. Thiswork aimed to develop a solution for the detection of this phase in duplex stainless steels throughthe computational classification of induced magnetic field signals. The proposed solution is based onan Optimum Path Forest classifier, which was revealed to be more robust and effective than Bayes,Artificial Neural Network and Support Vector Machine based classifiers. The induced magneticfield was produced by the interaction between an applied external field and the microstructure.Samples of the 2205 duplex stainless steel were thermal aged in order to obtain different amounts ofsigma phases (up to 18% in content). The obtained classification results were compared against theones obtained by Charpy impact energy test, amount of sigma phase, and analysis of the fracturesurface by scanning electron microscopy and X-ray diffraction. The proposed solution achieved aclassification accuracy superior to 95% and was revealed to be robust to signal noise, being thereforea valid testing tool to be used in this domain

    Overview: Computer vision and machine learning for microstructural characterization and analysis

    Full text link
    The characterization and analysis of microstructure is the foundation of microstructural science, connecting the materials structure to its composition, process history, and properties. Microstructural quantification traditionally involves a human deciding a priori what to measure and then devising a purpose-built method for doing so. However, recent advances in data science, including computer vision (CV) and machine learning (ML) offer new approaches to extracting information from microstructural images. This overview surveys CV approaches to numerically encode the visual information contained in a microstructural image, which then provides input to supervised or unsupervised ML algorithms that find associations and trends in the high-dimensional image representation. CV/ML systems for microstructural characterization and analysis span the taxonomy of image analysis tasks, including image classification, semantic segmentation, object detection, and instance segmentation. These tools enable new approaches to microstructural analysis, including the development of new, rich visual metrics and the discovery of processing-microstructure-property relationships.Comment: submitted to Materials and Metallurgical Transactions

    Classification of Bainitic Structures Using Textural Parameters and Machine Learning Techniques

    Get PDF
    Bainite is an essential constituent of modern high strength steels. In addition to the still great challenge of characterization, the classification of bainite poses difficulties. Challenges when dealing with bainite are the variety and amount of involved phases, the fineness and complexity of the structures and that there is often no consensus among human experts in labeling and classifying those. Therefore, an objective and reproducible characterization and classification is crucial. To achieve this, it is necessary to analyze the substructure of bainite using scanning electron microscope (SEM). This work will present how textural parameters (Haralick features and local binary pattern) calculated from SEM images, taken from specifically produced benchmark samples with defined structures, can be used to distinguish different bainitic microstructures by using machine learning techniques (support vector machine). For the classification task of distinguishing pearlite, granular, degenerate upper, upper and lower bainite as well as martensite a classification accuracy of 91.80% was achieved, by combining Haralick features and local binary pattern

    Automatic quantitative analysis of microstructure of ductile cast iron using digital image processing

    Get PDF
    Ductile cast iron is preferred as nodular iron or spheroidal graphite iron. Ductile cast iron contains graphite in form of discrete nodules and matrix of ferrite and perlite. In order to determine the mechanical properties, one needs to determine volume of phases in matrix and nodularity in the microstructure of metal sample. Manual methods available for this, are time consuming and accuracy depends on expertize. The paper proposes a novel method for automatic quantitative analysis of microstructure of Ferritic Pearlitic Ductile Iron which calculates volume of phases and nodularity of that sample. This gives results within a very short time (approximately 5 sec) with 98% accuracy for volume phases of matrices and 90% of accuracy for nodule detection and analysis which are in the range of standard specified for SG 500/7 and validated by metallurgist

    Efficient reconstruction of prior austenite grains in steel from etched light optical micrographs using deep learning and annotations from correlative microscopy

    Get PDF
    The high-temperature austenite phase is the initial state of practically all technologically relevant hot forming and heat treatment operations in steel processing. The phenomena occurring in austenite, such as recrystallization or grain growth, can have a decisive influence on the subsequent properties of the material. After the hot forming or heat treatment process, however, the austenite transforms into other microstructural constituents and information on the prior austenite morphology are no longer directly accessible. There are established methods available for reconstructing former austenite grain boundaries via metallographic etching or electron backscatter diffraction (EBSD) which both exhibit shortcomings. While etching is often difficult to reproduce and strongly depend on the investigated steel’s alloying concept, EBSD acquisition and reconstruction is rather time-consuming. But in fact, though, light optical micrographs of steels contrasted with conventional Nital etchant also contain information about the former austenite grains. However, relevant features are not directly apparent or accessible with conventional segmentation approaches. This work presents a deep learning (DL) segmentation of prior austenite grains (PAG) from Nital etched light optical micrographs. The basis for successful segmentation is a correlative characterization from EBSD, light and scanning electron microscopy to specify the ground truth required for supervised learning. The DL model shows good and robust segmentation results. While the intersection over union of 70% does not fully reflect the model performance due to the inherent uncertainty in PAG estimation, a mean error of 6.1% in mean grain size derived from the segmentation clearly shows the high quality of the result

    Characterization of damage evolution on metallic components using ultrasonic non-destructive methods

    Get PDF
    When fatigue is considered, it is expected that structures and machinery eventually fail. Still, when this damage is unexpected, besides of the negative economic impact that it produces, life of people could be potentially at risk. Thus, nowadays it is imperative that the infrastructure managers, ought to program regular inspection and maintenance for their assets; in addition, designers and materials manufacturers, can access to appropriate diagnostic tools in order to build superior and more reliable materials. In this regard, and for a number of applications, non-destructive evaluation techniques have proven to be an efficient and helpful alternative to traditional destructive assays of materials. Particularly, for the design area of materials, in recent times researchers have exploited the Acoustic Emission (AE) phenomenon as an additional assessing tool with which characterize the mechanical properties of specimens. Nevertheless, several challenges arise when treat said phenomenon, since its intensity, duration and arrival behavior is essentially stochastic for traditional signal processing means, leading to inaccuracies for the outcome assessment. In this dissertation, efforts are focused on assisting in the characterization of the mechanical properties of advanced high strength steels during under uniaxial tensile tests. Particularly of interest, is being able to detect the nucleation and growth of a crack throughout said test. Therefore, the resulting AE waves generated by the specimen during the test are assessed with the aim of characterize their evolution. For this, on the introduction, a brief review about non-destructive methods emphasizing the AE phenomenon is introduced. Next is presented, an exhaustive analysis with regard to the challenge and deficiencies of detecting and segmenting each AE event over a continuous data-stream with the traditional threshold detection method, and additionally, with current state of the art methods. Following, a novel AE event detection method is proposed, with the aim of overcome the aforementioned limitations. Evidence showed that the proposed method (which is based on the short-time features of the waveform of the AE signal), excels the detection capabilities of current state of the art methods, when onset and endtime precision, as well as when quality of detection and computational speed are also considered. Finally, a methodology aimed to analyze the frequency spectrum evolution of the AE phenomenon during the tensile test, is proposed. Results indicate that it is feasible to correlate nucleation and growth of a crack with the frequency content evolution of AE events.Cuando se considera la fatiga de los materiales, se espera que eventualmente las estructuras y las maquinarias fallen. Sin embargo, cuando este daño es inesperado, además del impacto económico que este produce, la vida de las personas podría estar potencialmente en riesgo. Por lo que hoy en día, es imperativo que los administradores de las infraestructuras deban programar evaluaciones y mantenimientos de manera regular para sus activos. De igual manera, los diseñadores y fabricantes de materiales deberían de poseer herramientas de diagnóstico apropiadas con el propósito de obtener mejores y más confiables materiales. En este sentido, y para un amplio número de aplicaciones, las técnicas de evaluación no destructivas han demostrado ser una útil y eficiente alternativa a los ensayos destructivos tradicionales de materiales. De manera particular, en el área de diseño de materiales, recientemente los investigadores han aprovechado el fenómeno de Emisión Acústica (EA) como una herramienta complementaria de evaluación, con la cual poder caracterizar las propiedades mecánicas de los especímenes. No obstante, una multitud de desafíos emergen al tratar dicho fenómeno, ya que el comportamiento de su intensidad, duración y aparición es esencialmente estocástico desde el punto de vista del procesado de señales tradicional, conllevando a resultados imprecisos de las evaluaciones. Esta disertación se enfoca en colaborar en la caracterización de las propiedades mecánicas de Aceros Avanzados de Alta Resistencia (AAAR), para ensayos de tracción de tensión uniaxiales, con énfasis particular en la detección de fatiga, esto es la nucleación y generación de grietas en dichos componentes metálicos. Para ello, las ondas mecánicas de EA que estos especímenes generan durante los ensayos, son estudiadas con el objetivo de caracterizar su evolución. En la introducción de este documento, se presenta una breve revisión acerca de los métodos existentes no destructivos con énfasis particular al fenómeno de EA. A continuación, se muestra un análisis exhaustivo respecto a los desafíos para la detección de eventos de EA y las y deficiencias del método tradicional de detección; de manera adicional se evalúa el desempeño de los métodos actuales de detección de EA pertenecientes al estado del arte. Después, con el objetivo de superar las limitaciones presentadas por el método tradicional, se propone un nuevo método de detección de actividad de EA; la evidencia demuestra que el método propuesto (basado en el análisis en tiempo corto de la forma de onda), supera las capacidades de detección de los métodos pertenecientes al estado del arte, cuando se evalúa la precisión de la detección de la llegada y conclusión de las ondas de EA; además de, cuando también se consideran la calidad de detección de eventos y la velocidad de cálculo. Finalmente, se propone una metodología con el propósito de evaluar la evolución de la energía del espectro frecuencial del fenómeno de EA durante un ensayo de tracción; los resultados demuestran que es posible correlacionar el contenido de dicha evolución frecuencial con respecto a la nucleación y crecimiento de grietas en AAAR's.Postprint (published version

    A deep learning approach for complex microstructure inference

    Get PDF
    Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learning’s seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 30–50 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology

    Determination of Forming Limits in Sheet Metal Forming Using Deep Learning

    Get PDF
    The forming limit curve (FLC) is used to model the onset of sheet metal instability during forming processes e.g., in the area of finite element analysis, and is usually determined by evaluation of strain distributions, derived with optical measurement systems during Nakajima tests. Current methods comprise of the standardized DIN EN ISO 12004-2 or time-dependent approaches that heuristically limit the evaluation area to a fraction of the available information and show weaknesses in the context of brittle materials without a pronounced necking phase. To address these limitations, supervised and unsupervised pattern recognition methods were introduced recently. However, these approaches are still dependent on prior knowledge, time, and localization information. This study overcomes these limitations by adopting a Siamese convolutional neural network (CNN), as a feature extractor. Suitable features are automatically learned using the extreme cases of the homogeneous and inhomogeneous forming phase in a supervised setup. Using robust Student’s t mixture models, the learned features are clustered into three distributions in an unsupervised manner that cover the complete forming process. Due to the location and time independency of the method, the knowledge learned from formed specimen up until fracture can be transferred on to other forming processes that were prematurely stopped and assessed using metallographic examinations, enabling probabilistic cluster membership assignments for each frame of the forming sequence. The generalization of the method to unseen materials is evaluated in multiple experiments, and additionally tested on an aluminum alloy AA5182, which is characterized by Portevin-LE Chatlier effects
    corecore