10,688 research outputs found

    Adaptive content mapping for internet navigation

    Get PDF
    The Internet as the biggest human library ever assembled keeps on growing. Although all kinds of information carriers (e.g. audio/video/hybrid file formats) are available, text based documents dominate. It is estimated that about 80% of all information worldwide stored electronically exists in (or can be converted into) text form. More and more, all kinds of documents are generated by means of a text processing system and are therefore available electronically. Nowadays, many printed journals are also published online and may even discontinue to appear in print form tomorrow. This development has many convincing advantages: the documents are both available faster (cf. prepress services) and cheaper, they can be searched more easily, the physical storage only needs a fraction of the space previously necessary and the medium will not age. For most people, fast and easy access is the most interesting feature of the new age; computer-aided search for specific documents or Web pages becomes the basic tool for information-oriented work. But this tool has problems. The current keyword based search machines available on the Internet are not really appropriate for such a task; either there are (way) too many documents matching the specified keywords are presented or none at all. The problem lies in the fact that it is often very difficult to choose appropriate terms describing the desired topic in the first place. This contribution discusses the current state-of-the-art techniques in content-based searching (along with common visualization/browsing approaches) and proposes a particular adaptive solution for intuitive Internet document navigation, which not only enables the user to provide full texts instead of manually selected keywords (if available), but also allows him/her to explore the whole database

    Viewpoint Discovery and Understanding in Social Networks

    Full text link
    The Web has evolved to a dominant platform where everyone has the opportunity to express their opinions, to interact with other users, and to debate on emerging events happening around the world. On the one hand, this has enabled the presence of different viewpoints and opinions about a - usually controversial - topic (like Brexit), but at the same time, it has led to phenomena like media bias, echo chambers and filter bubbles, where users are exposed to only one point of view on the same topic. Therefore, there is the need for methods that are able to detect and explain the different viewpoints. In this paper, we propose a graph partitioning method that exploits social interactions to enable the discovery of different communities (representing different viewpoints) discussing about a controversial topic in a social network like Twitter. To explain the discovered viewpoints, we describe a method, called Iterative Rank Difference (IRD), which allows detecting descriptive terms that characterize the different viewpoints as well as understanding how a specific term is related to a viewpoint (by detecting other related descriptive terms). The results of an experimental evaluation showed that our approach outperforms state-of-the-art methods on viewpoint discovery, while a qualitative analysis of the proposed IRD method on three different controversial topics showed that IRD provides comprehensive and deep representations of the different viewpoints

    Large Graph Analysis in the GMine System

    Full text link
    Current applications have produced graphs on the order of hundreds of thousands of nodes and millions of edges. To take advantage of such graphs, one must be able to find patterns, outliers and communities. These tasks are better performed in an interactive environment, where human expertise can guide the process. For large graphs, though, there are some challenges: the excessive processing requirements are prohibitive, and drawing hundred-thousand nodes results in cluttered images hard to comprehend. To cope with these problems, we propose an innovative framework suited for any kind of tree-like graph visual design. GMine integrates (a) a representation for graphs organized as hierarchies of partitions - the concepts of SuperGraph and Graph-Tree; and (b) a graph summarization methodology - CEPS. Our graph representation deals with the problem of tracing the connection aspects of a graph hierarchy with sub linear complexity, allowing one to grasp the neighborhood of a single node or of a group of nodes in a single click. As a proof of concept, the visual environment of GMine is instantiated as a system in which large graphs can be investigated globally and locally
    • …
    corecore