195 research outputs found

    Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program

    Get PDF
    We describe the parallel implementation of our generalized stellar atmosphere and NLTE radiative transfer computer program PHOENIX. We discuss the parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. Our implementation uses a MIMD design based on a relatively small number of MPI library calls. We report the results of test calculations on a number of different parallel computers and discuss the results of scalability tests.Comment: To appear in ApJ, 1997, vol 483. LaTeX, 34 pages, 3 Figures, uses AASTeX macros and styles natbib.sty, and psfig.st

    Evaluating techniques for parallelization tuning in MPI, OmpSs and MPI/OmpSs

    Get PDF
    Parallel programming is used to partition a computational problem among multiple processing units and to define how they interact (communicate and synchronize) in order to guarantee the correct result. The performance that is achieved when executing the parallel program on a parallel architecture is usually far from the optimal: computation unbalance and excessive interaction among processing units often cause lost cycles, reducing the efficiency of parallel computation. In this thesis we propose techniques oriented to better exploit parallelism in parallel applications, with emphasis in techniques that increase asynchronism. Theoretically, this type of parallelization tuning promises multiple benefits. First, it should mitigate communication and synchronization delays, thus increasing the overall performance. Furthermore, parallelization tuning should expose additional parallelism and therefore increase the scalability of execution. Finally, increased asynchronism would provide higher tolerance to slower networks and external noise. In the first part of this thesis, we study the potential for tuning MPI parallelism. More specifically, we explore automatic techniques to overlap communication and computation. We propose a speculative messaging technique that increases the overlap and requires no changes of the original MPI application. Our technique automatically identifies the application’s MPI activity and reinterprets that activity using optimally placed non-blocking MPI requests. We demonstrate that this overlapping technique increases the asynchronism of MPI messages, maximizing the overlap, and consequently leading to execution speedup and higher tolerance to bandwidth reduction. However, in the case of realistic scientific workloads, we show that the overlapping potential is significantly limited by the pattern by which each MPI process locally operates on MPI messages. In the second part of this thesis, we study the potential for tuning hybrid MPI/OmpSs parallelism. We try to gain a better understanding of the parallelism of hybrid MPI/OmpSs applications in order to evaluate how these applications would execute on future machines and to predict the execution bottlenecks that are likely to emerge. We explore how MPI/OmpSs applications could scale on the parallel machine with hundreds of cores per node. Furthermore, we investigate how this high parallelism within each node would reflect on the network constraints. We especially focus on identifying critical code sections in MPI/OmpSs. We devised a technique that quickly evaluates, for a given MPI/OmpSs application and the selected target machine, which code section should be optimized in order to gain the highest performance benefits. Also, this thesis studies techniques to quickly explore the potential OmpSs parallelism inherent in applications. We provide mechanisms to easily evaluate potential parallelism of any task decomposition. Furthermore, we describe an iterative trialand-error approach to search for a task decomposition that will expose sufficient parallelism for a given target machine. Finally, we explore potential of automating the iterative approach by capturing the programmers’ experience into an expert system that can autonomously lead the search process. Also, throughout the work on this thesis, we designed development tools that can be useful to other researchers in the field. The most advanced of these tools is Tareador – a tool to help porting MPI applications to MPI/OmpSs programming model. Tareador provides a simple interface to propose some decomposition of a code into OmpSs tasks. Tareador dynamically calculates data dependencies among the annotated tasks, and automatically estimates the potential OmpSs parallelization. Furthermore, Tareador gives additional hints on how to complete the process of porting the application to OmpSs. Tareador already proved itself useful, by being included in the academic classes on parallel programming at UPC.La programación paralela consiste en dividir un problema de computación entre múltiples unidades de procesamiento y definir como interactúan (comunicación y sincronización) para garantizar un resultado correcto. El rendimiento de un programa paralelo normalmente está muy lejos de ser óptimo: el desequilibrio de la carga computacional y la excesiva interacción entre las unidades de procesamiento a menudo causa ciclos perdidos, reduciendo la eficiencia de la computación paralela. En esta tesis proponemos técnicas orientadas a explotar mejor el paralelismo en aplicaciones paralelas, poniendo énfasis en técnicas que incrementan el asincronismo. En teoría, estas técnicas prometen múltiples beneficios. Primero, tendrían que mitigar el retraso de la comunicación y la sincronización, y por lo tanto incrementar el rendimiento global. Además, la calibración de la paralelización tendría que exponer un paralelismo adicional, incrementando la escalabilidad de la ejecución. Finalmente, un incremente en el asincronismo proveería una tolerancia mayor a redes de comunicación lentas y ruido externo. En la primera parte de la tesis, estudiamos el potencial para la calibración del paralelismo a través de MPI. En concreto, exploramos técnicas automáticas para solapar la comunicación con la computación. Proponemos una técnica de mensajería especulativa que incrementa el solapamiento y no requiere cambios en la aplicación MPI original. Nuestra técnica identifica automáticamente la actividad MPI de la aplicación y la reinterpreta usando solicitudes MPI no bloqueantes situadas óptimamente. Demostramos que esta técnica maximiza el solapamiento y, en consecuencia, acelera la ejecución y permite una mayor tolerancia a las reducciones de ancho de banda. Aún así, en el caso de cargas de trabajo científico realistas, mostramos que el potencial de solapamiento está significativamente limitado por el patrón según el cual cada proceso MPI opera localmente en el paso de mensajes. En la segunda parte de esta tesis, exploramos el potencial para calibrar el paralelismo híbrido MPI/OmpSs. Intentamos obtener una comprensión mejor del paralelismo de aplicaciones híbridas MPI/OmpSs para evaluar de qué manera se ejecutarían en futuras máquinas. Exploramos como las aplicaciones MPI/OmpSs pueden escalar en una máquina paralela con centenares de núcleos por nodo. Además, investigamos cómo este paralelismo de cada nodo se reflejaría en las restricciones de la red de comunicación. En especia, nos concentramos en identificar secciones críticas de código en MPI/OmpSs. Hemos concebido una técnica que rápidamente evalúa, para una aplicación MPI/OmpSs dada y la máquina objetivo seleccionada, qué sección de código tendría que ser optimizada para obtener la mayor ganancia de rendimiento. También estudiamos técnicas para explorar rápidamente el paralelismo potencial de OmpSs inherente en las aplicaciones. Proporcionamos mecanismos para evaluar fácilmente el paralelismo potencial de cualquier descomposición en tareas. Además, describimos una aproximación iterativa para buscar una descomposición en tareas que mostrará el suficiente paralelismo en la máquina objetivo dada. Para finalizar, exploramos el potencial para automatizar la aproximación iterativa. En el trabajo expuesto en esta tesis hemos diseñado herramientas que pueden ser útiles para otros investigadores de este campo. La más avanzada es Tareador, una herramienta para ayudar a migrar aplicaciones al modelo de programación MPI/OmpSs. Tareador proporciona una interfaz simple para proponer una descomposición del código en tareas OmpSs. Tareador también calcula dinámicamente las dependencias de datos entre las tareas anotadas, y automáticamente estima el potencial de paralelización OmpSs. Por último, Tareador da indicaciones adicionales sobre como completar el proceso de migración a OmpSs. Tareador ya se ha mostrado útil al ser incluido en las clases de programación de la UPC

    Overlapping communication and computation by using a hybrid MPI/SMPSs approach

    Get PDF
    A previous version of this document was submitted for publication by october 2008.Communication overhead is one of the dominant factors that affect performance in high-performance computing systems. To reduce the negative impact of communication, programmers overlap communication and computation by using asynchronous communication primitives. This increases code complexity, requiring more effort to write parallel code and making less readable code. This paper presents the hybrid use of MPI and SMPSs (SMP superscalar), a task-based shared-memory programming model, enhanced with a restart mechanism allowing the programmer to introduce the asynchronism that is necessary to enable the effective communication/computation overlap in a productive way. We demonstrate the hybrid use of MPI/SMPSs with the high-performance LINPACK benchmark, which uses the lookahead technique to overlap communication and computation. MPI/SMPSs improves the performance of a pure MPI with look-ahead by 7,6% on a 1024 processors machine. In addition to better performance, hybrid MPI/SMPSs substantially reduces code complexity, it is less sensitive to network bandwidth and operating system noise, and improves the use of main memory.Postprint (published version

    Scalable Applications on Heterogeneous System Architectures: A Systematic Performance Analysis Framework

    Get PDF
    The efficient parallel execution of scientific applications is a key challenge in high-performance computing (HPC). With growing parallelism and heterogeneity of compute resources as well as increasingly complex software, performance analysis has become an indispensable tool in the development and optimization of parallel programs. This thesis presents a framework for systematic performance analysis of scalable, heterogeneous applications. Based on event traces, it automatically detects the critical path and inefficiencies that result in waiting or idle time, e.g. due to load imbalances between parallel execution streams. As a prerequisite for the analysis of heterogeneous programs, this thesis specifies inefficiency patterns for computation offloading. Furthermore, an essential contribution was made to the development of tool interfaces for OpenACC and OpenMP, which enable a portable data acquisition and a subsequent analysis for programs with offload directives. At present, these interfaces are already part of the latest OpenACC and OpenMP API specification. The aforementioned work, existing preliminary work, and established analysis methods are combined into a generic analysis process, which can be applied across programming models. Based on the detection of wait or idle states, which can propagate over several levels of parallelism, the analysis identifies wasted computing resources and their root cause as well as the critical-path share for each program region. Thus, it determines the influence of program regions on the load balancing between execution streams and the program runtime. The analysis results include a summary of the detected inefficiency patterns and a program trace, enhanced with information about wait states, their cause, and the critical path. In addition, a ranking, based on the amount of waiting time a program region caused on the critical path, highlights program regions that are relevant for program optimization. The scalability of the proposed performance analysis and its implementation is demonstrated using High-Performance Linpack (HPL), while the analysis results are validated with synthetic programs. A scientific application that uses MPI, OpenMP, and CUDA simultaneously is investigated in order to show the applicability of the analysis

    Energy-Aware High Performance Computing

    Get PDF
    High performance computing centres consume substantial amounts of energy to power large-scale supercomputers and the necessary building and cooling infrastructure. Recently, considerable performance gains resulted predominantly from developments in multi-core, many-core and accelerator technology. Computing centres rapidly adopted this hardware to serve the increasing demand for computational power. However, further performance increases in large-scale computing systems are limited by the aggregate energy budget required to operate them. Power consumption has become a major cost factor for computing centres. Furthermore, energy consumption results in carbon dioxide emissions, a hazard for the environment and public health; and heat, which reduces the reliability and lifetime of hardware components. Energy efficiency is therefore crucial in high performance computing

    Definition of avionics concepts for a heavy lift cargo vehicle, appendix A

    Get PDF
    The major objective of the study task was to define a cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles. This volume provides the results of the main simulation processor selection study and describes some proof-of-concept demonstrations for the avionics test bed facility

    Seamless optimization of the GEMM kernel for task-based programming models

    Get PDF
    The general matrix-matrix multiplication (GEMM) kernel is a fundamental building block of many scientific applications. Many libraries such as Intel MKL and BLIS provide highly optimized sequential and parallel versions of this kernel. The parallel implementations of the GEMM kernel rely on the well-known fork-join execution model to exploit multi-core systems efficiently. However, these implementations are not well suited for task-based applications as they break the data-flow execution model. In this paper, we present a task-based implementation of the GEMM kernel that can be seamlessly leveraged by task-based applications while providing better performance than the fork-join version. Our implementation leverages several advanced features of the OmpSs-2 programming model and a new heuristic to select the best parallelization strategy and blocking parameters based on the matrix and hardware characteristics. When evaluating the performance and energy consumption on two modern multi-core systems, we show that our implementations provide significant performance improvements over an optimized OpenMP fork-join implementation, and can beat vendor implementations of the GEMM (e.g., Intel MKL and AMD AOCL). We also demonstrate that a real application can leverage our optimized task-based implementation to enhance performance.Peer ReviewedPostprint (author's final draft
    • …
    corecore