1,094 research outputs found

    Passenger Flows in Underground Railway Stations and Platforms, MTI Report 12-43

    Get PDF
    Urban rail systems are designed to carry large volumes of people into and out of major activity centers. As a result, the stations at these major activity centers are often crowded with boarding and alighting passengers, resulting in passenger inconvenience, delays, and at times danger. This study examines the planning and analysis of station passenger queuing and flows to offer rail transit station designers and transit system operators guidance on how to best accommodate and manage their rail passengers. The objectives of the study are to: 1) Understand the particular infrastructural, operational, behavioral, and spatial factors that affect and may constrain passenger queuing and flows in different types of rail transit stations; 2) Identify, compare, and evaluate practices for efficient, expedient, and safe passenger flows in different types of station environments and during typical (rush hour) and atypical (evacuations, station maintenance/ refurbishment) situations; and 3) Compile short-, medium-, and long-term recommendations for optimizing passenger flows in different station environments

    A NATURALISTIC COMPUTATIONAL MODEL OF HUMAN BEHAVIOR IN NAVIGATION AND SEARCH TASKS

    Get PDF
    Planning, navigation, and search are fundamental human cognitive abilities central to spatial problem solving in search and rescue, law enforcement, and military operations. Despite a wealth of literature concerning naturalistic spatial problem solving in animals, literature on naturalistic spatial problem solving in humans is comparatively lacking and generally conducted by separate camps among which there is little crosstalk. Addressing this deficiency will allow us to predict spatial decision making in operational environments, and understand the factors leading to those decisions. The present dissertation is comprised of two related efforts, (1) a set of empirical research studies intended to identify characteristics of planning, execution, and memory in naturalistic spatial problem solving tasks, and (2) a computational modeling effort to develop a model of naturalistic spatial problem solving. The results of the behavioral studies indicate that problem space hierarchical representations are linear in shape, and that human solutions are produced according to multiple optimization criteria. The Mixed Criteria Model presented in this dissertation accounts for global and local human performance in a traditional and naturalistic Traveling Salesman Problem. The results of the empirical and modeling efforts hold implications for basic and applied science in domains such as problem solving, operations research, human-computer interaction, and artificial intelligence

    Efficient AoA-based wireless indoor localization for hospital outpatients using mobile devices

    Get PDF
    The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding

    Route schematization with landmarks

    Get PDF
    Predominant navigation applications make use of a turn-by-turn instructions approach and are mostly supported by small screen devices. This combination does little to improve users\u27 orientation or spatial knowledge acquisition. Considering this limitation, we propose a route schematization method aimed for small screen devices to facilitate the readability of route information and survey knowledge acquisition. Current schematization methods focus on the route path and ignore context information, specially polygonal landmarks (such as lakes, parks, and regions), which is crucial for promoting orientation. Our schematization method, in addition to the route path, takes as input: adjacent streets, point-like landmarks, and polygonal landmarks. Moreover, our schematic route map layout highlights spatial relations between route and context information, improves the readability of turns at decision points, and the visibility of survey information on small screen devices. The schematization algorithm combines geometric transformations and integer linear programming to produce the maps. The contribution of this paper is a method that produces schematic route maps with context information to support the user in wayfinding and orientation

    Location- and collision avoidance system technologies, providers and potential applications

    Get PDF
    • …
    corecore